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Executive summary 

The aim of this work was to develop a spatial planning tool to identify sensi-
tive marine areas where seabirds would be most at risk from future offshore 
wind energy developments. Conversely, the aim was to identify areas where 
future development would have the least impact on seabirds. 

Sensitivity mapping approaches and outcomes vary widely and so it is im-
portant to define the outcomes of such assessments. A more nuanced ap-
proach, using sensitivity mapping for the selection of areas for future devel-
opment, should help decrease risks to seabirds and, by avoiding the most sen-
sitive areas, reduce the consenting risk for developers. 

We developed an approach to sensitivity mapping with the objective to rank 
Danish marine areas according to high vs low relative species risk. Relative spe-
cies risks were quantified with respect to explicit assessment targets based on 
species conservation status. We considered three sources of risk (hazards): hab-
itat alteration, displacement, and collision. The susceptibility of each species to 
each of these hazards was informed by published literature. In a precautionary 
approach, relative species risks to each hazard were combined by taking the 
maximum across each species, and across the three hazards. This means that for 
each mapped grid cell (1 x 1 km) the ranking combines the most vulnerable 
species to each hazard (defined by multiple parameters), and the highest-rank-
ing areas across the three hazards.  This produced a map of highest-ranking 
areas in Danish marine areas from which we can determine the most and least 
sensitive marine areas for future offshore wind development.  

The initial implementation of the algorithm, presented here, used aerial survey 
data to estimate the distribution of seabirds. Most of this data was collected dur-
ing the winter and spring months, which for migratory species is sufficient, but 
for resident species leaves a large temporal gap.  We present some preliminary 
results of habitat use maps using GPS tracking data, which we plan to incorpo-
rate in the spatial risk-ranking approach in the future to improve temporal cov-
erage. In addition, we also plan to incorporate migratory corridors which are 
important to improve the assessment of the collision risk hazard. 

The framework presented here has potential to be developed into an interac-
tive tool for users (rather than static maps) and is also generalizable so could 
include other taxa and hazards.  
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Resumé 

Formålet med denne rapport var at udvikle et rumligt planlægningsværktøj 
der kan bruges til at identificere følsomme marine områder, hvor havfugle vil 
være mest udsatte for fremtidige udviklinger inden for havvindenergi. Ende-
ligt var formålet at identificere marine områder, hvor fremtidig havvindud-
vikling vil have den mindste påvirkning på havfugle. 

Tilgangene og resultaterne inden for følsomhedskortlægning kan variere bety-
deligt. Det er derfor vigtigt at definere resultaterne af sådanne vurderinger, så 
det bliver klart, hvordan valget af områder til fremtidig udvikling kan mind-
ske/øge risici for havfugle i en bestemt forvaltnings- og politisk kontekst. 

Nærværende rapport udviklede en tilgang til følsomhedskortlægning med 
det formål at rangere danske havområder efter høj vs. lav relativ artsrisiko. 
Den relative artsrisiko blev kvantificeret med hensyn til eksplicitte vurde-
ringsmål baseret på arters bevaringsstatus og tre kilder til risiko (trusler): ha-
bitatændring, fortrængning og kollision. Den enkelte arts sårbarhed over for 
hver af disse trusler blev baseret på offentlig tilgængelig litteratur. Ved at be-
nytte et forsigtighedsprincip blev de relative artsrisici for hver trussel kombi-
neret ved at tage den maksimale risiko på tværs af hver art og de tre trusler. 
Dette betyder, at for hver kortlagt kvadrat (1 x 1 km) er rangeringen en kom-
bination af den mest sårbare art for hver trussel (defineret ved flere para-
metre) og de højest rangerede områder på tværs af de tre trusler. Dette resul-
terede i et kort over de højest rangerede områder i danske havområder, hvor-
fra vi kan bestemme de mest og mindst følsomme marine områder for frem-
tidig havvindudvikling. 

Den første implementering af algoritmen, som præsenteres her, anvendte data 
fra flyundersøgelser til at estimere havfuglenes udbredelsesområde. Størstede-
len af disse data blev indsamlet i vinter- og forårsmånederne, hvilket er tilstræk-
keligt for trækfugle, men efterlader et stort tidsmæssigt hul for ynglefugle. Der-
udover præsenteres nogle foreløbige resultater af habitatudnyttelseskort ud fra 
GPS-trackingdata, som vi planlægger at inkorporere i en fremtidig udgave af 
den rumlige risikorangeringsmetode. Dette vil kunne forbedre den tidsmæs-
sige dækning. Derudover planlægger vi også at inkludere trækkorridorer, som 
er vigtige for at forbedre vurderingen af risikoen for kollision. 

Den tilgang, der præsenteres her, har potentiale til at blive videreudviklet til 
et interaktivt værktøj til brugere (i stedet for statiske kort). Derudover er det 
muligt at generalisere den, så den kan inkludere andre arter og trusler. 
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Preface 

Background for the report and relation to other activities  
This report contributes to the project “Environmental mapping and screening of 
the offshore wind potential in Denmark” initiated in 2022 by the Danish Energy 
Agency. The project aims to support the long-term planning of offshore wind 
farms by providing a comprehensive overview of the combined offshore wind 
potential in Denmark. It is funded under the Finance Act 2022 through the 
programme “Investeringer i et fortsat grønnere Danmark” (Investing in the 
continuing greening of Denmark). The project is carried out by NIRAS, Aar-
hus University (Department of Ecoscience) and DTU Wind.  

The overall project consists of four tasks defined by the Danish Energy 
Agency (https://ens.dk/ansvarsomraader/vindmoeller-paa-hav/planlaeg-
ning-af-fremtidens-havvindmoelleparker) : 

• Sensitivity mapping of nature, environmental, wind and hydrodynamic 
conditions. 

• Technical screening and assessment. to identify the most suitable areas for 
development of offshore wind energy in Danish marine areas. 

• Assessment of potential cumulative effects from large-scale offshore wind 
development in Denmark and neighbouring countries. 

• Assessment of barriers and potentials in relation to coexistence. 
 

This report addresses one component of Task 1: sensitivity mapping. Specifi-
cally, it provides an overview of areas within Danish offshore regions that are 
likely to be particularly vulnerable to offshore wind farm development regard-
ing birds and based on existing data. Other subjects within Task 1—such as fish, 
marine mammals, bats, benthic habitats, wind and hydrodynamics and ecosys-
tem modelling — will be presented in separate reports in late 2024 and early 
2025. A synthesis of all topics under Task 1 will be published in 2025. 

The project has relied predominantly on historical data, with minimal new 
data collection. As a result, the sensitivity mapping is largely dependent on 
the availability and accessibility of pre-existing data across specific subject ar-
eas. From the outset, significant effort was made to incorporate all relevant 
data to comprehensively address the task requirements. However, certain ex-
isting datasets could not be accessed. Appendix 4 specifies the data sources 
used in the sensitivity mapping for seabirds and outlines additional existing 
data. It is important to recognise that sensitivity mapping serves as a dynamic 
tool, which can be updated as new data becomes available. Owing to the tech-
nical nature of the work in the report, all key terms are defined at their first 
use in the text and with a glossary in Appendix 1 for reference. 

The project management teams at both AU and NIRAS have contributed to 
the description of the background for the report and the relation to other ac-
tivities in the preface. The report and the work contained within are solely the 
responsibility of the authors. 

https://ens.dk/ansvarsomraader/vindmoeller-paa-hav/planlaegning-af-fremtidens-havvindmoelleparker
https://ens.dk/ansvarsomraader/vindmoeller-paa-hav/planlaegning-af-fremtidens-havvindmoelleparker
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Background to the sensitivity mapping approach 
Sensitivity maps have been developed for a wide range of marine species, in-
cluding seabirds and marine mammals, to inform spatial planning of offshore 
activities (Garthe & Hüppop, 2004; Furness et al., 2013; Bradbury et al., 2014; 
Certain et al., 2015; Kelsey et al., 2018; Best & Halpin, 2019; Verling et al., 2021; 
Fauchald et al., 2024). Sensitivity mapping exercises involve combining spa-
tial distribution information from multiple species to indicate areas poten-
tially sensitive to human activities. While algorithms vary, the contribution of 
each species is usually weighted by the level of concern for the population 
status and resilience, as well as the species susceptibility to hazards, such as 
displacement and collision risk. These weights are typically informed by mul-
tiple lines of heterogenous evidence (e.g., vital rates, habitat flexibility, flight 
manoeuvrability) and expressed on likert-scale or ordinal scores (e.g., low-to-
high on a scale of 1-5). Besides sensitivity maps, such ordinal rankings are 
commonly used to generate semi-quantitative risk matrices in a “weight-of-
evidence” approach to environmental risk assessment (Cox et al., 2005; 
Anthony Cox, 2008; Linkov et al., 2009). Such semi-quantitative approaches 
are widely used in broad-scale, strategic environmental risk assessments to 
screen and rank levels of concern for potential species impacts (Linkov et al., 
2009; Tamis et al., 2016; Stelzenmüller et al., 2020). Risk-based approaches to 
environmental assessment are popular because they are consistent with risk 
management frameworks and administrative processes that require risk man-
agers to consider both the likelihood and potential consequence of unwanted 
events (Gibbs & Browman, 2015; Verling et al., 2021). In this report, we express 
risk both relative to target protection levels for each species (hereafter, relative 
species risk), and then rank different areas in Danish marine waters by the 
highest relative species risk (hereafter, spatially relative risk). Sensitivity 
mapping exercises that aim to rank areas by combining species risks can be 
considered as spatially explicit risk-ranking algorithms (Box 1).  

Box 1: Risk assessment. Broadly speaking, risk expresses the likelihood and 
consequence of unwanted outcome(s) (Appendix 1: Glossary). In environ-
mental risk assessment, the unwanted outcome can be defined, for example, 
as unwanted health effects to individuals, or deterioration of population sta-
tus. The likelihood and consequence of such changes can be estimated in ab-
solute terms however, this is often impractical due to lack of necessary data, 
or time/cost constraints. Relativistic risk assessments, including risk-ranking 
and relative risk approaches, circumvent the estimation of absolute risk. Risk-
ranking approaches aim to express risk in ordinal terms, which focus on the 
identification of lowest and highest risk scenarios. By contrast, relative risk 
approaches express risks with respect to a reference, benchmark level. Unlike 
categorical ranking of risk, continuous measures of relative risk allow magni-
tude comparisons between levels of risk.  

While sensitivity maps for seabird species in offshore areas have been widely 
published, there is currently no agreed best-practice algorithms for generating 
these. Different authors have proposed different algorithms and arithmetic op-
erations to combine vulnerability scores to weights, and how these species-spe-
cific weights and distribution data are then combined to produce overall sensi-
tivity maps for the receptor group. For example, Certain et al. (2015) proposed 
a community vulnerability index, derived from Hill’s diversity index (Hill, 
1973), that could be interpreted as the number of equally abundant and fully 
vulnerable species to a given pressure type at a given location. The authors de-
rived species-specific vulnerability to collision and displacement by scaling 10 
ordinal scores, building upon previously published vulnerability and sensi-
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tivity factors (e.g., Furness et al., 2013). A key conceptual advance was the con-
sideration of “primary factors” that drive vulnerability or sensitivity of a popu-
lation, and “aggravation factors” that mediate pre-existing vulnerability (Cer-
tain et al., 2015). However, no justification is provided for the proposed function 
to calculate species-specific vulnerability/sensitivity based on these factors. 
More generally, different arithmetic operations on ordinal scores carry differ-
ent, often unarticulated, assumptions about their units, linearity, additivity and 
multiplicativity. When the calculation does not attempt to replicate the causal 
pathway of impact on each population, the outcome of the calculation, aiming 
to reflect the relative vulnerability of each species, may not scale linearly with 
potential population-level impacts.  

To our knowledge, no published sensitivity mapping approaches have been 
quantitatively validated for seabirds. However, for seabird sensitivity to off-
shore wind development, the ranking of species-specific susceptibility to dis-
placement and collision risk have been qualitatively scrutinized and refined 
by multiple research groups over the last two decades (Garthe & Hüppop, 
2004; Furness et al., 2013; Bradbury et al., 2014; Certain et al., 2015; Kelsey et 
al., 2018; Fauchald et al., 2024). With accumulating empirical evidence and 
quantitative evidence syntheses (e.g., Avian Displacement Guidance 
Committee, 2024; Lamb et al., 2024) becoming available, there is substantial 
potential for an increasing degree of consensus on the expected impacts and 
level of concern for each species and key life history contexts. 

In the present work, we develop a spatially explicit risk-ranking algorithm 
that aims to build on these existing sensitivity mapping approaches, while 
aiming to address some of the key caveats. With the proposed algorithm, we 
set out to achieve the following: 

• Formulate explicit assessment objectives and target protections for each 
species. 

• Produce maps that rank Danish marine areas according to high vs low spe-
cies risk relative to the assessment targets 

• Minimize the risk of impact on any species of concern; high risk for one 
species at any given location should not be compensated by a low risk for 
another species of equal conservation concern. 

• As well as displacement and collision risk, consider the risk of habitat al-
teration through overlap with core use areas for each species. 
 

Furthermore, we aimed, where possible, to move away from the qualitative 
treatment of quantitative data typical of previous sensitivity mapping ap-
proaches. To achieve this, we developed a quantitative assessment algorithm 
in which 1) input parameters for each species can be directly informed by em-
pirical studies, 2) species-specific risks are quantified in a way that aim to rep-
licate the causal pathways of impact on each population, and 3) uncertainty is 
propagated through the algorithm by re-sampling of the input parameters. 
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The developed spatial risk-ranking algorithm succeeded in achieving each of 
these objectives. The highest- and lowest-ranking areas and associated uncer-
tainty are provided in Figure 2.7 in the Results section, we demonstrate the 
steps that were taken to produce this relative risk map, including the influence 
of key input parameters and assumptions. The Discussion provides further 
guidance on the interpretation of the map, with an emphasis on aspects of 
seabird sensitivity that are yet to be implemented in the algorithm, but pave 
way for further development and future iterations of the relative risk map-
ping approach. 
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Summary 

To identify the most suitable areas for development of offshore wind energy 
in Danish marine areas, the Danish Energy Agency, in 2022, initiated a project 
to support the long-term planning of future offshore wind farms in Denmark. 
This report evaluates the relative risks to seabirds posed by offshore wind en-
ergy developments in Danish waters, focusing on habitat alteration, displace-
ment, and collision risks.  

Using a spatial risk-ranking algorithm, this report aims to identify the highest- 
versus lowest-sensitivity areas based on seabird distributions and abundances 
derived from aerial surveys conducted between 2000 and 2024. The algorithm 
combines species density distribution estimates with species-specific assess-
ment targets and susceptibility to risks (habitat alteration, collision, displace-
ment), producing maps highlighting zones where future offshore wind devel-
opment could have relatively high impacts. Data on bird distributions and 
abundances were collected using the Distance Sampling line transect method 
(Buckland et al., 2001), comprising 243 aerial surveys conducted over 203 dif-
ferent days and covering more than 150,000 km of transects and more than 
230,000 species detections. These surveys focused on capturing distributions of 
non-breeding birds. An overview of the data set is provided in Appendix 4. 

Coastal and shallow areas showed the highest sensitivity in terms of potential 
habitat alteration and displacement risk in case of future wind energy devel-
opment. These areas had high concentrations of divers, grebes and seaducks, 
and contained core habitats that wind farm structures and associated activi-
ties may disrupt. Seabirds susceptible to displacement, such as divers and 
some species of sea ducks, were particularly at risk, as these species tended to 
avoid areas around wind farms. These findings underscore the importance of 
protecting coastal and shallow areas with high seabird density, especially 
those designated as Special Protection Areas (SPAs).  

Furthermore, offshore areas were identified as having higher relative collision 
risk, especially for species such as kittiwakes and other gull species, which are 
more prone to flying at heights within turbine blade sweep areas. The map-
ping identified particular offshore regions as high-risk zones for these species. 

Additional data can provide extra information for the risk mapping exercise.  
For example, the current version of this work uses previously published ex-
pert assessment of collision risk for each species. However, GPS tracking data 
from birds can provide empirical information on migration routes and forag-
ing activity. Such data from key species of colonial breeding birds during the 
2023-2024 breeding seasons highlighted additional areas that could be at risk 
by illustrating marine area use patterns for sensitive species. 

In conclusion, this relativistic risk assessment framework, grounded in quanti-
tative assessment targets and species-specific susceptibility to risks, provides a 
decision-making tool for future wind farm planning to minimise ecological im-
pacts on Denmark’s seabird populations. Recommendations emphasise contin-
ued data collection and refinement of species-specific input parameters to en-
hance reliability of the algorithm, ultimately supporting a balanced approach 
to wind energy expansion and seabird conservation in Danish waters. 
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Sammenfatning 

Med henblik på at identificere de mest egnede områder til fremtidige udbyg-
ning af havvind i Danmark igangsatte Energistyrelsen i 2022 et projekt for at 
understøtte langsigtet planlægning af fremtidige havvindmølleparker i Dan-
mark. Nærværende rapport vurderer de relative risici for havfugle i forbin-
delse med udvikling af havvindenergi i danske farvande, med fokus på æn-
dringer i levesteder, fortrængning og kollisionsrisici. 

Ved hjælp af en rumlig risikorangeringsalgoritme sigter denne rapport mod 
at identificere områder med den højeste og laveste følsomhed baseret på hav-
fuglenes udbredelse og antal, indsamlet fra optællinger af fugle fra fly og ud-
ført mellem 1999 og 2024. Algoritmen kombinerer disse artsfordelingesesti-
mater med artspecifikke bedømmelsesmål og sårbarhed overfor risikofakto-
rer (habitatændring, kollision og fortrængning), og producerer kort, der iden-
tificerer zoner, hvor fremtidig havvindudvikling kan have relativ stor ind-
virkning på fugle. Data om fuglenes udbredelse og antal blev indsamlet ved 
hjælp af Distance Sampling linjetransektmetoden, bestående af 243 optællin-
ger af fugle fra fly udført over 203 forskellige dage og dækkende mere end 
150.000 km transekter og mere end 230.000 fugleobservationer. Disse optæl-
linger fokuserede på at afdække fuglenes udbredelse udenfor yngletiden. Et 
overblik over data kan findes i Appendix 4. 

Kystnære og lavvandede områder udviste de højeste følsomheder overfor po-
tentielle ændringer af levesteder og risici for fortrængning i forbindelse med 
fremtidig havvindudvikling. Disse områder havde høje koncentrationer af 
lappedykkere, skalleslugere og havdykænder og omfattede kerneområder, 
som eventuelle vindmølleanlæg og tilknyttede aktiviteter ville kunne påvirke. 
Havfugle med høj følsomhed over for fortrængning, såsom lommer og visse 
arter af havdykænder, var særligt udsatte, da disse arter havde tendens til at 
undgå områder i og omkring vindmølleparker. Disse resultater understreger 
vigtigheden af at beskytte kystnære og lavvandede områder med høj havfug-
letæthed, især de områder, der er udpeget som særlige beskyttelsesområder 
(Fuglebeskyttelsesområder). 

Desuden blev offshore-områder identificeret som havende højere relativ kol-
lisionsrisici, især for arter som rider og andre mågefugle, der har større ten-
dens til at flyve i samme højder som turbinebladene. Kortlægningen identifi-
cerede særlige offshore-regioner som højrisikozoner for disse arter. 

Vurderingerne af kollisionsrisici er baseret på tidligere offentliggjorte ekspert-
vurderinger af kollisionsrisiko for hver art. GPS-sporingsdata fra fugle, som 
giver empirisk information om individuelle migrationsruter og fouragerings-
aktiviteter, er tilvejebragt, og kan forbedre algoritmen i en kommende ver-
sion. Sådanne data for kolonirugende arter, sporet i 2023 og 2024, bidrog til 
følsomhedskortlægningen baseret på deres brug af marine områder. Yderli-
gere data kan tilføre ekstra information til risikokortlægningsøvelsen. For ek-
sempel anvender den nuværende version af dette arbejde tidligere offentlig-
gjorte ekspertvurderinger af kollisionsrisiko for hver art, men GPS-sporings-
data fra fugle kan give empirisk information om migrationsruter og fourage-
ringsaktiviteter. Sådanne data fra centrale arter af kolonirugende fugle fra 
ynglesæsonerne 2023-2024 kan yderligere forbedre de rumlige kort ved at 
kortlægge følsomme arters anvendelse af det marine miljø i sommerperioden. 
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Afslutningsvis giver denne relative risikovurderingstilgang, baseret på risiko-
relaterede beskyttelsesniveauer, kvantitative screeningsmål og sårbarhedsfak-
torer for hver havfugleart, et beslutningsværktøj til fremtidig planlægning af 
placering af havvindmølleparker med henblik på at minimere økologiske på-
virkninger på Danmarks havfuglebestande. Anbefalingerne understreger be-
hovet for fortsat dataindsamling af artspecifikke inputparametre for at forbedre 
algoritmens pålidelighed, hvilket i sidste ende understøtter en afbalanceret til-
gang til udvidelse af vindenergi og bevaring af havfugle i danske farvande. 
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1 Methods 

1.1 Spatial risk-ranking algorithm 

1.1.1 Assessment objective 

This analysis set out to identify areas that minimize risk to seabird species 
from potential future offshore wind developments. The objective was to pro-
vide a spatial representation of relative risk, with each grid value representing 
the risk of impact to those seabird species addressed in the assessment, rela-
tive to all other grid locations on the map. To incorporate multiple seabird 
species with different conservation status, risks were expressed relative to 
species-specific assessment targets, which quantified the desired level of pro-
tection for each population and associated habitat in the study area. The 
multi-species assessment also required the inclusion of species-specific sus-
ceptibility to hazards associated with offshore wind development. Three haz-
ards were considered, each with different pathways of impact: alteration of 
core habitat through presence of wind farm structures and associated vessels, 
displacement through behavioural avoidance of wind farms and associated 
maintenance traffic, and injury or death through collision with wind turbines. 
Relative risk maps were generated for each of the three hazards, informed by 
the species-specific assessment targets, input parameters related to species 
susceptibility to hazards, and the species abundance and distribution in the 
study area estimated from aerial line transect surveys (Figure 1.1). Barrier ef-
fects with respect to commuting and migration pathways were not included 
in the maps quantitatively, however, we present relevant colony and tracking 
data for colonial breeding birds and discuss areas that may be at greater risk 
due to these effects in the Discussion. 

Figure 1.1.   Conceptual over-
view of the approach to map rela-
tive risks. The spatial distribution 
of risks from the three hazards 
(shown in dark blue) was in-
formed by the spatial occurrence 
of species (light blue). Data 
sources are shown in grey: aerial 
survey data were used to inform 
the implemented algorithm (dark 
blue arrows). Tracking data were 
analysed to inform species space 
utilization, but this data source 
did not inform the implemented 
algorithm at this stage. Species-
specific input parameters (dark 
green) were used to calculate ex-
pected risks for each species and 
hazard. To bring species risks to 
the same scale relative to as-
sessment targets, target protec-
tion levels were specified for 
each species (TPL) and their 
habitat (HPL).    
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1.1.2 Assessment targets 

We define risk with respect to two assessment targets: Target Protection Level 
(TPL) and habitat protection level (HPL). Assessment targets were specified 
for each species or species group that were analysed together as a species unit 
in the spatial risk-ranking algorithm. The modelled species units could in-
clude one or multiple ecologically similar species identifiable from aerial sur-
veys. The individual species included within each species unit are listed in 
Table 1.1 and explained in further detail in the section 1.2.1. 

The TPL describes the desired level of complete protection for each species 
unit in Danish national waters, given current population status, trends, and 
resilience to existing threats. Specifically, the TPL was defined as the propor-
tion of the current population size in the national waters that should be pro-
tected from any additional habitat loss, mortality, and impaired reproduction, 
to maintain or achieve favourable conservation status.  For example, in case 
of an endangered population, where the aim is to avoid any additional im-
pact, the TPL would be set at 100%. The aim of the TPL is to reflect the capacity 
of the population to cope with additional threats, independent of the type of 
threat or hazard. In the present work, we express TPL as proportion of the 
estimated population abundance for each species unit in the Danish EEZ ma-
rine region covered by aerial line transect surveys. However, the same princi-
ple could be applied to other definitions of populations or sub-populations 
should they be included in the assessment.  

In addition to TPL, we considered the proportion of each species’ range that 
should be protected from any additional habitat alteration, the Habitat Pro-
tection Level (HPL). The aim of the HPL was to reflect the dependence of each 
species on spatially limited resources and was used to ringfence core areas 
from further wind energy development for each species. In the present work, 
we defined a single HPL for each species unit, averaging across different sea-
sons that the species unit was expected to be present in the Danish national 
waters (see section 1.2.1). Seasonally varying species distributions and associ-
ated variation in HPL would be possible to implement in future versions of 
the algorithm. 

To account for existing levels of protection for each species, the TPL was ad-
justed to reflect estimated species abundance outside any Special Protection 
Areas (SPAs) designated for each species. This assumed that SPA designation 
had 100% effectiveness in achieving the TPL for the proportion of the popu-
lation within the protected areas. For example, if the TPL for a species unit 
was set at 0.8, but half of the total estimated abundance fell within SPAs des-
ignated for one or more species in the unit, the TPL was adjusted to 0.4 outside 
the designated areas.  

1.1.3 Quantifying relative species risk 

Relative risk of each hazard (habitat alteration, displacement, collision) for 
each modelled species unit 𝑖𝑖 and spatial location 𝑥𝑥 was expressed as a risk 
ratio. In clinical trials, risk ratios are often used to express incidence rates of 
effects, or outcomes, between treatment and control conditions. Similarly, 
here, risk ratios were calculated between the expected outcomes at each spa-
tial location should a hypothetical future wind farm be placed there (treat-
ment/numerator) and “allowable” outcomes based on the assessment targets 
for each species unit (control/denominator). The expected outcomes were cal-
culated for three metrics, one for each hazard:  the degree of overlap between 
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core habitat and the hypothetical wind farm, the expected number of birds at 
risk of displacement, and the expected number of birds at risk of collision. 
Risk ratio values of > 1 could therefore be interpreted as the expected outcome 
exceeding allowable levels by this factor value. Conversely, risk ratios < 1 
would indicate that the allowable thresholds have not been exceeded. Species-
unit-specific values for HPL and TPL were used to calculate the denominator 
for each hazard, enabling comparisons of relative risk between the modelled 
species units with different assessment targets (hereafter referred to as “rela-
tive species risk”). 

The relative species risk of exceeding the HPL threshold (ℎ𝑖𝑖∗)  for each species 
unit 𝑖𝑖 and grid location 𝑥𝑥 was calculated as the risk ratio 

𝑅𝑅ℎ[𝑖𝑖,𝑥𝑥] =
𝑞𝑞𝑖𝑖,𝑥𝑥

(1 − ℎ𝑖𝑖∗)
 

 
where 𝑞𝑞𝑖𝑖,𝑥𝑥 is the habitat overlap metric, representing the degree of habitat 
overlap with species unit 𝑖𝑖 in a hypothetical future scenario where a wind 
farm footprint would cover the 1x1 km grid cell area at the location 𝑥𝑥. More 
specifically, 𝑞𝑞𝑖𝑖,𝑥𝑥 was quantified as the fraction of the species range with a 
lower density than the estimated density in the grid cell 𝑛𝑛𝑖𝑖,𝑥𝑥. Species range 
was defined as the area predicted to contain 0.95 (i.e., 95%) of the species 
unit’s abundance in the study area. Thus, 𝑞𝑞𝑖𝑖,𝑥𝑥 represents the species’ usage of 
the grid location relative to its range. 𝑅𝑅ℎ[𝑖𝑖,𝑥𝑥] was set to its maximum value 
within any designated SPAs and a surrounding buffer zone, defined by the 
expected spatial extent of displacement for the species (𝛽𝛽𝑖𝑖). In other words, 
each species unit was ringfenced a core area based on its distribution and 
HPL, and any additional areas under SPA designations. 

The relative species risk of collision and displacement were expressed as the 
ratio between the expected number of affected individuals as the assessment 
metric for each grid cell, and the proportion of the population outside any 
designated SPAs that was allowable to impose the risk (1-TPLa). Similar to the 
habitat overlap metric, the expected number of birds at risk of collision at any 
grid location 𝑥𝑥 was calculated for a hypothetical future scenario where a wind 
farm footprint would cover the 1x1 km grid cell area at the location 𝑥𝑥. By con-
trast, the expected number of displaced birds was calculated for a point source 
of disturbance at location 𝑥𝑥, which could displace birds both at the grid loca-
tion 𝑥𝑥 and its neighbouring cells, depending on the expected spatial extent of 
displacement for the species unit. With the main objective being spatial risk-
ranking, we did not consider different scenarios for wind farm characteristics 
such as turbine size, spacing or footprint areas. 

For collision and displacement, the species risk ratios were calculated respec-
tively as 

𝑅𝑅𝑐𝑐[𝑖𝑖,𝑥𝑥] =
𝜆𝜆𝑖𝑖  ∙  𝑛𝑛𝑖𝑖,𝑥𝑥

(𝑁𝑁𝑖𝑖 − ∆𝑁𝑁𝑖𝑖)  ∙  (1 − 𝑝𝑝𝑖𝑖∗)
 

 
and 

𝑅𝑅𝑑𝑑[𝑖𝑖,𝑥𝑥] =
∑ 𝑛𝑛𝑖𝑖,𝑚𝑚  ∙  𝛼𝛼𝑖𝑖𝑀𝑀
𝑚𝑚

(𝑁𝑁𝑖𝑖 − ∆𝑁𝑁𝑖𝑖)  ∙  (1 − 𝑝𝑝𝑖𝑖∗)
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Where for each species unit 𝑖𝑖, 𝑝𝑝𝑖𝑖∗ is the adjusted target protection level outside 
SPAs (TPLa), 𝑁𝑁𝑖𝑖 is the estimated abundance in the study area, and ∆𝑁𝑁𝑖𝑖 is the 
abundance of the species unit within any SPAs designated for the unit species. 
The numerator in each equation aimed to reflect the number of birds poten-
tially at risk from a hypothetical future wind farm placed at a grid location 𝑥𝑥. 
For collision risk, this was calculated as the product of proxy collision rate (𝜆𝜆𝑖𝑖) 
and the estimated density for each species unit in each grid cell 𝑛𝑛𝑖𝑖,𝑥𝑥. In other 
words, the number of birds at risk of collision was specified to increase line-
arly with bird density at any given location. For displacement, the number of 
susceptible individuals was calculated as the product of displacement rate (𝛼𝛼𝑖𝑖) 
and the estimated species unit density summed over M grid cells in the neigh-
bourhood of each grid location 𝑥𝑥. The neighbourhood was specified as a circle 
with a radius equal to the spatial extent of displacement of each species unit, 
𝛽𝛽𝑖𝑖. In other words, the number of birds susceptible to displacement was cal-
culated as proportional to bird density in the neighbourhood of each grid cell, 
where the neighbourhood size depended on the expected spatial extent of dis-
placement for each species unit. 

1.1.4 Input parameters 

For each modelled species unit, we set values for TPL (𝑝𝑝𝑖𝑖∗), HPL (ℎ𝑖𝑖∗), proxy 
collision rate (𝜆𝜆𝑖𝑖), proxy displacement rate (𝛼𝛼𝑖𝑖), and the expected spatial extent 
of displacement (𝛽𝛽𝑖𝑖). To allow comparisons of the developed spatial risk-rank-
ing algorithm with previously published sensitivity mapping approaches, we 
aligned, where possible, the input parameters with previously published val-
ues (Furness et al., 2013; Certain et al., 2015; Fauchald et al., 2024).  

The parameterization and use of the TPL in the algorithm was analogous to 
previous sensitivity mapping approaches that weight species maps by the 
level of concern for each population. Similarly, here we derived TPL from the 
European Red List of Birds (BirdLife International, 2021) (Table 1.1, Table 1.2). 
Because all the modelled species are expected to range outside Denmark, we 
based the TPL on a conservation listing at the European level, rather than at 
the national level. For example, common eider, classified as endangered, was 
set a TPL of 0.85. In other words, the algorithm aimed to protect 0.85 (i.e., 85%) 
of the eider population size from any exposure to displacement and collision. 
Conversely, the non-protected proportion (1-0.85 = 0.15) of the eider popula-
tion was permitted a level of exposure to these hazards. Modelled species 
units that included any species classified as vulnerable (grebes, fulmar, velvet 
scoter, kittiwake) and near-threatened (merganser) were set TPL values of 0.8 
and 0.7. The remaining species units were categorised as “least concern” and 
set a TPL of 0.65 (Table 1.2). 
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Table 1.1.   Species included in the analysis. EURING = EURING species code, ITIS = Integrated Taxonomic Information Sys-
tem, Species unit = an abbreviated label indicating the species or species groups that were analysed together as an ecologically 
similar species unit in the spatial risk-ranking algorithm, IUCN = European vulnerability status under the IUCN classification 
(Birdlife International, 2021).   LC = least concern, NT = near threatened, VU = vulnerable, EN = endangered 
EURING ITIS Name (Danish) Name (English) Scientific name Family Species 

unit 
IUCN 

59 
 

Lom sp. Diver sp. Gavia sp. Gaviidae Diver 
 

20 174474 Rødstrubet lom Red-throated diver Gavia stellata Gaviidae Diver LC 
30 174471 Sortstrubet lom Black-throated diver Gavia arctica Gaviidae Diver LC 
100 174479 Gråstrubet lappedyk-

ker 
Red-necked grebe Podiceps grisegena Podicipedidae Grebe VU 

90 174491 Toppet lappedykker Great crested grebe Podiceps cristatus Podicipedidae Grebe LC 
129 

 
Lappedykker sp. Grebe sp. Podicipedidae sp. Podicipedidae Grebe 

 

220 174536 Mallemuk Northern fulmar Fulmarus glacialis Procellariidae Fulmar VU 
710 174712 Sule Northern gannet Morus bassanus Sulidae Gannet LC 
2180 175141 Hvinand Goldeneye Bucephala clangula Anatidae Goldeneye LC 
2120 175147 Havlit Long-tailed duck Clangula hyemalis Anatidae Longtailed LC 
2060 175155 Ederfugl Common eider Somateria mollissima Anatidae Eider EN 
2130 175171 Sortand Common scoter Melanitta nigra Anatidae Scoter LC 
2150 175163 Fløjlsand Velvet scoter Melanitta fusca Anatidae Velvetscoter VU 
2210 175187 Toppet skallesluger Red-breasted merganser Mergus serrator Anatidae Merganser NT 
5900 176832 Stormmåge Common gull Larus canus Laridae Gull LC 
5920 176824 Sølvmåge Herring gull Larus argentatus agg. Laridae Gull LC 
5910 176821 Sildemåge Lesser black-backed gull Larus fuscus Laridae LBBG LC 
6000 176815 Svartbag Great black-backed gull Larus marinus Laridae GBBG LC 
5780 824065 Dværgmåge Little gull Hydrocoloeus minutus Laridae Littlegull LC 
6020 176875 Ride Black-legged kittiwake Rissa tridactyla Laridae Kittiwake VU 
6150 176888 Fjordterne Common tern Sterna hirundo Laridae Tern LC 
6160 176890 Havterne Arctic tern Sterna paradisaea Laridae Tern LC 
6159 

 
Hav/fjordterne Arctic/Common tern 

 
Laridae Tern 

 

6110 176932 Splitterne Sandwich tern Thalasseus sandvicensis Laridae Tern LC 
6259 

 
Terne sp. Tern sp. Sterninae sp. Laridae Tern 

 

6360 176971 Alk Razorbill Alca torda Alcidae Alcid LC 
6345 

 
Alk/lomvie Razorbill/Guillemot 

 
Alcidae Alcid 

 

6340 176974 Lomvie Common guillemot Uria aalge Alcidae Alcid LC 
6380 176985 Tejst Black guillemot Cepphus grylle Alcidae Alcid LC 
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HPL values for each species unit were set based on “habitat flexibility” scores 
by Fauchald et al., 2024 (Table 1.2). Species that were considered the most de-
pendent on the spatial distribution of their resources (divers, goldeneye, long-
tailed duck, common eider, common scoter, merganser) were set a HPL of 0.4. 
Thus, for each of these species, the top 0.4 of their home range area was 
ringfenced as not available to future development.  Species that were consid-
ered most flexible in terms of the spatial distribution of their resources (north-
ern fulmar, northern gannet, lesser black-backed gull and little gull) were set 
a HPL of 0.1. This translated to a larger proportion of their home range (1-
0.1=0.9) being considered available to future development. Species with inter-
mediate habitat flexibility were obtained HPL values by linear scaling of the 
vulnerability scores between the least and most flexible species (Table 1.2). 

The rate and spatial extent of displacement were set directly proportional to the 
“vulnerability to disturbance” scores presented in Fauchald et al. (2024) (Table 
1.2). The scaling was informed by previously published values and literature 

Table 1.2.   Input parameters to the spatial risk-ranking algorithm, specific to each modelled species unit, alongside published 
vulnerability factors (Fauchald et al., 2024).   Species unit = an abbreviated label indicating the species or species group that 
were analysed together as a unit in the risk-ranking algorithm (Table 1.1). Input parameters to the algorithm included target pro-
tection level (TPL), habitat protection level (HPL), displacement rate (𝛼𝛼𝑖𝑖), spatial extent of displacement (𝛽𝛽𝑖𝑖), and proxy collision 
risk (𝝀𝝀𝒊𝒊). Previously published vulnerability factors (Fauchald et al., 2024) included vulnerability to collision (VC), avoidance 
score (h), habitat flexiblity score (k), and vulnerability to disturbance (VD), each provided on an ordinal scale 1-5. The input pa-
rameters HPL, 𝛼𝛼𝑖𝑖, and 𝜆𝜆𝑖𝑖 were informed by the published values for k, h, and VC, respectively, for the relevant species within 
each modelled species unit. When multiple values were reported for multiple species within the modelled species unit (e.g., di-
vers), the average of reported values was used. 
   Input parameters Fauchald et al. 2024 

Species unit Status 
TPL 
(𝒑𝒑𝒊𝒊∗) 

HPL 
(𝒉𝒉𝒊𝒊∗) 

𝜶𝜶𝒊𝒊 𝜷𝜷𝒊𝒊 𝝀𝝀𝒊𝒊 Relevant species VC h k VD 

Diver LC 0.65 0.40 0.50 10 0.38 Gavia arctica, Gavia stellata 1.9 5.0 4.0 4.5 

Grebe VU 0.80 0.30 0.50 10 0.34 Podiceps grisegena 1.7 5.0 3.0 4.0 

Fulmar VU 0.80 0.10 0.30 6 0.46 Fulmarus glacialis 2.3 3.0 1.0 2.0 

Gannet LC 0.65 0.10 0.50 10 0.70 Morus bassanus 3.5 5.0 1.0 2.0 

Goldeneye LC 0.65 0.40 0.40 8 0.50 Bucephala clangula 2.5 4.0 4.0 4.0 

Longtailed LC 0.65 0.40 0.30 6 0.64 Clangula hyemalis 3.2 3.0 4.0 3.5 

Eider EN 0.85 0.40 0.30 6 0.44 Somateria mollissima 2.2 3.0 4.0 3.5 

Scoter LC 0.65 0.40 0.50 10 0.30 Melanitta nigra 1.5 5.0 4.0 4.5 

Velvet- 
scoter 

VU 0.80 0.30 0.50 10 0.30 Melanitta fusca 1.5 5.0 3.0 4.0 

Merganser NT 0.75 0.40 0.40 8 0.44 Mergus serrator 2.2 4.0 4.0 4.0 

Gull LC 0.65 0.20 0.10 2 0.84 Larus canus 4.2 1.0 2.0 1.5 

LBBG LC 0.65 0.10 0.10 2 0.84 Larus fuscus 4.2 1.0 1.0 1.0 

GBBG LC 0.65 0.20 0.10 2 0.84 Larus marinus  4.2 1.0 2.0 1.5 

Littlegull LC 0.65 0.10 0.10 2 0.84 Not available in published lit-
erature, parameter values 
taken from Larus fuscus 

    

Kittiwake VU 0.80 0.30 0.10 2 0.74 Rissa tridactyla 3.7 1.0 3.0 2.0 

Tern LC 0.65 0.30 0.10 2 0.74 Sterna hirundo, Sterna para-
disaea 

3.7 1.0 3.0 2.0 

Alcid LC 0.65 0.33 0.30 6 0.35 Alca torda, Cepphus grylle, 
Uria aalge 

1.7 3.0 3.3 3.2 
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reviews on the magnitude and spatial extent of species density reduction at-
tributed to the proximity of operational wind farms (Dierschke et al., 2016; 
Welcker & Nehls, 2016; Avian Displacement Guidance Committee, 2024; Lamb 
et al., 2024). A recent quantitative meta-analysis by Lamb et al. (2024) supported 
previously published, more qualitative reviews (e.g., Dierschke et al., 2016) that 
suggested systematic displacement by divers, grebes, sea ducks, alcids, and 
gannets. A more mixed response, including both avoidance and attraction at 
different spatial scales, has been reported for several gull species (e.g., 
Vanermen et al., 2020; Lamb et al., 2024). As well as taxon, reported magnitude 
and spatial extent of displacement vary with season and study design, such as 
study area footprint and distance to reference area (Lamb et al., 2024). Studies 
with large survey area buffers (>10 km) have reported displacement and avoid-
ance responses at these ranges (10-20 km) (Avian Displacement Guidance 
Committee, 2024). Similarly, reported magnitude of displacement vary between 
studies. In the German North Sea, diver abundance was estimated to decrease 
by 94% within windfarm footprint and 1 km zone, and by 52% within the foot-
print and 10 km zone (Garthe et al., 2023). In their review of displacement stud-
ies, Dierschke et al. (2016) grouped species with a change in abundance of >50% 
as strong, and ~50% as weak avoidance or attraction. We therefore specified the 
spatial extent and magnitude of displacement at 10 km and 50%, respectively, 
for the species that were scored to have the highest avoidance rates (divers, 
grebes, gannet, common and velvet scoter) by Fauchald et al. (2024). Species 
that were scored the lowest avoidance rates (gulls, kittiwake, and terns) by the 
same study were set to displace at 2 km neighbourhoods of each grid cell at a 
rate of 10%. Intermediate values were obtained by scaling the avoidance scores 
between these two extremes (Table 1.2). 

As an interim approach, the collision parameter was set by linear scaling of 
the “vulnerability to collision” index in Fauchald et al. (2024) (Table 1.2). 
While the parameter values did not aim to reflect the absolute rate of birds at 
risk, the values for this parameter were assumed to be proportional to the ac-
tual collision rate, and that the number of birds at risk of collision for each 
species would increase linearly with the estimated density for each species 
unit at any given location.  

1.1.5 Spatial risk-ranking algorithm and uncertainty 

Relative risk maps were generated in four main steps (Figure 1.2). First, risk 
ratios were calculated in each grid cell of the study area based on the predicted 
density distributions for each of the 17 modelled species units. This created 17 
risk ratio maps for each of the three hazards (habitat overlap, displacement, 
and collision). Next, a combined map of risk ratios was generated for each 
hazard by taking the maximum value for each grid cell across the species 
units. Maximum values were taken to ensure that a low relative risk for one 
species unit would not compensate for a high relative risk for another at any 
one location. This second step created three risk ratio maps, each representing 
maximum species risk at each grid location relative to the assessment targets. 
In a third step, the maximum risk ratio values were then translated to relative 
values in space. This was achieved by taking the quantiles of the risk ratio 
values across the prediction grid. The resulting values between 0-1 represent 
the ranking of each grid cell by their risk ratio value. For example, a quantile 
value of 0.95 at a grid location would indicate that 95% of the study area had 
lower risk ratio values than the value at the grid location. This translation to 
spatially relative risk was done to allow ranking of areas; the magnitudes of 
relative risk values were not interpreted due to the paucity of empirical data 
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available to inform some of the input parameters. Finally, in a fourth step, the 
spatially relative risk maps for each of the three hazards were combined. Max-
imum values were taken across the three maps, in order to present the high-
est-ranking areas across the three hazards with equal weight. 

 

To propagate uncertainty from the spatial analysis, the above four steps were 
repeated 500 times, each time using a different bootstrap prediction for spe-
cies unit densities. To represent uncertainty, the ratio of standard deviation to 
mean (i.e., coefficient of variation) was calculated over the resulting 500 com-
bined hazard maps. Uncertainty on input parameters (TPL, HPL, displace-
ment and collision rates for each species unit) was not included.  

  

 
Figure 1.2.   Overview of the spatial risk-ranking algorithm and key input parameters. The algorithm was applied to 17 species 
units (subscript i), some of which combined ecologically similar species identifiable from aerial surveys (see Table 1.1).    
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1.2 Aerial survey data analysis 

1.2.1 Modelled species and seasons 

Spatial density distribution maps were estimated separately for 17 seabird 
species units, representing either individual species or species groups (Table 
1.1). Ecologically similar bird species that are challenging to identify to species 
level from aircraft were grouped together. The groups included red- and 
black-throated divers (hereafter, divers), red-necked and great crested grebe 
(hereafter, grebes), common- and herring gull (hereafter, grey gulls), com-
mon-, arctic-, and sandwich terns (hereafter, terns), and razorbills and com-
mon guillemots (hereafter, alcids). For brevity, the 17 species and species 
groups (Table 1.1) are referred to as the modelled species units. These species 
units represented the majority of species detections in the dataset (Table 1.3). 

Table 1.3.   All species records with over 70 total observations (Ndet) in the analysed dataset. The first part of the table shows 
the species that were included in the spatial risk-ranking algorithm and the label of the associated species unit, which combined 
some ecologically similar, field-identified species groups together. The second part of the table shows species or species groups 
that were excluded from the implemented risk-ranking algorithm or GPS analyses.   
English name Imple-

mented in  
algorithm 

GPS  
analysis 

AU_code EURING Danish name Scientific name Species unit Ndet 

Common scoter TRUE FALSE 98 2130 Sortand Melanitta nigra Scoter 57849 
Common eider TRUE FALSE 95 2060 Ederfugl Somateria  

mollissima 
Eider 37806 

Herring gull TRUE FALSE 256 5920 Sølvmåge Larus argentatus 
agg. 

Gull (Grey 
gulls) 

35599 

Razorbill/  
guillemot 

TRUE TRUE 287 6345 Alk/lomvie  Alcid 14228 

Long-tailed Duck TRUE FALSE 93 2120 Havlit Clangula hyemalis Longtailed 8880 
Northern gannet TRUE FALSE 34 710 Sule Morus bassanus Gannet 6151 
Velvet scoter TRUE FALSE 99 2150 Fløjlsand Melanitta fusca Velvetscoter 5392 
Red-breasted 
Merganser 

TRUE FALSE 106 2210 Toppet 
skallesluger 

Mergus serrator Merganser 5171 

Diver sp. TRUE FALSE 1 59 Lom sp. Gavia sp. Diver 4849 
Black-legged  
kittiwake 

TRUE FALSE 268 6020 Ride Rissa tridactyla Kittiwake 4670 

Black-backed 
gull 

TRUE FALSE 258 6000 Svartbag Larus marinus GBBG 4383 

Red-throated 
diver 

TRUE FALSE 2 20 Rødstrubet lom Gavia stellata Diver 4085 

Goldeneye TRUE FALSE 90 2180 Hvinand Bucephala clangula Goldeneye 2296 
Common  
guillemot 

TRUE TRUE 288 6340 Lomvie Uria aalge Alcid 2254 

Common gull TRUE FALSE 255 5900 Stormmåge Larus canus Gull (Grey 
gulls) 

1932 

Little gull TRUE FALSE 266 5780 Dværgmåge Hydrocoloeus  
minutus 

Littlegull 1769 

Arctic/Common 
tern 

TRUE FALSE 277 6159 Hav/fjordterne  Tern 1721 

Northern fulmar TRUE FALSE 16 220 Mallemuk Fulmarus glacialis Fulmar 1653 
Sandwich tern TRUE TRUE 282 6110 Splitterne Thalasseus  

sandvicensis 
Tern 803 

Red-necked 
grebe 

TRUE FALSE 7 100 Gråstrubet 
lappedykker 

Podiceps grisegena Grebe 666 
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For each modelled species unit, we estimated a single density surface, aver-
aging across all survey years and seasons in Danish waters. However, for spe-
cies whose presence in Danish waters is strongly seasonal, due to their migra-
tion schedule, the spatial analysis excluded survey data from seasons that the 
species unit was considered absent a-priori (Table 1.4). This avoided introduc-
ing uncertainty to the static density distribution maps that was solely due to 
seasonal variation in presence-absence. For example, divers were considered 
absent during summer, and therefore only surveys from autumn, winter, and 
spring were included in the spatial analysis for this species unit.  

English name Imple-
mented in  
algorithm 

GPS  
analysis 

AU_code EURING Danish name Scientific name Species unit Ndet 

Razorbill TRUE FALSE 286 6360 Alk Alca torda Alcid 623 
Arctic tern TRUE TRUE 276 6160 Havterne Sterna paradisaea Tern 574 
Crested Grebe TRUE FALSE 8 90 Toppet lappedyk-

ker 
Podiceps cristatus Grebe 508 

Tern sp. TRUE FALSE 283 6259 Terne sp. Sterninae sp. Tern 450 
Lesser black-
backed gull 

TRUE TRUE 257 5910 Sildemåge Larus fuscus LBBG 421 

Grebe sp. TRUE FALSE 9 129 Lappedykker sp. Podicipedidae sp. Grebe 177 
Black-throated 
diver 

TRUE FALSE 3 30 Sortstrubet lom Gavia arctica Diver 87 

Black guillemot TRUE FALSE 289 6380 Tejst Cepphus grylle Alcid 25 
Common tern TRUE FALSE 275 6150 Fjordterne Sterna hirundo Tern 7 
Great cormorant FALSE FALSE 35 720 Skarv Phalacrocorax carbo  5109 
Mute swan FALSE FALSE 53 1520 Knopsvane Cygnus olor  5097 
Black-headed 
gull 

FALSE FALSE 263 5820 Hættemåge Chroicocephalus 
ridibundus 

 1685 

Gull sp. FALSE FALSE 269 6009 Måge sp. Laridae sp.  1534 
Mallard duck FALSE FALSE 72 1860 Gråand Anas platyrhynchos  1146 
Brent goose FALSE FALSE 66 1680 Knortegås Branta bernicla  697 
Greylag goose FALSE FALSE 59 1610 Grågås Anser anser  504 
Eurasian wigeon FALSE FALSE 80 1790 Pibeand Mareca penelope  439 
Goosander FALSE FALSE 105 2230 Stor skallesluger Mergus merganser  379 
Shelduck FALSE FALSE 71 1730 Gravand Tadorna tadorna  365 
Eurasian oyster-
catcher 

FALSE FALSE 182 4500 Strandskade Haematopus ostrale-
gus 
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Eurasian coot FALSE FALSE 177 4290 Blishøne Fulica atra  96 
Canada goose FALSE FALSE 68 1660 Canadagås Branta canadensis  95 
Whooper swan FALSE FALSE 55 1540 Sangsvane Cygnus cygnus  84 
Barnacle goose FALSE FALSE 67 1670 Bramgås Branta leucopsis  81 
Eurasian curlew FALSE FALSE 202 5410 Stor regnspove Numenius arquata  78 
Eurasian teal FALSE FALSE 75 1840 Krikand Anas crecca  73 

Table 1.4.   Definition of seasons and exclusion of survey data. For strongly migratory 
species or species groups, survey data were excluded from seasons that the modelled 
species unit were a-priori considered as absent in Danish waters.  
Season Start date Absent species units 
Spring 1 March   
Summer 15 June Divers, long-tailed duck, little gull 
Autumn 15 September Long-tailed duck, terns 
Winter 15 November LBBG, terns 
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1.2.2 Survey data sample size and coverage 

Visual aerial surveys were used to collect data on seabirds using line transect 
distance sampling methods (Buckland et al., 2001). The dataset consisted of 
243 aerial surveys from 203 different days between 1999-2024. The surveys 
covered 151,551 km of transect line, with each segment approximately 500 m 
long and up to 1000 m wide. Of the total 232,496 species detections, 213,832 
were of the species selected for modelling in this project, and 207,175 of which 
were retained in analysis after a data validation exercise to account for any 
left-right bias indicating undue influence by sighting conditions, such as sun 
glare (Appendix 2). 

The surveys provided an extensive spatial coverage over Danish marine wa-
ters, though with lower effort in the offshore regions of the North Sea (Figure 
1.2.). Most of the surveys were carried out over the winter and spring period 
(Figure 1.3) the start date for each seasonal period (spring, summer, autumn 
and winter) is given in Table 1.4. The largest number of observations came 
from common scoter, common eider and the grey gull species units (N > 
15,000) while the fewest observations were of lesser black-backed gull, little 
gull, and the grebe species unit (N < 1000) (Table 1.1, Table 1.3). 
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Figure 1.3.   Spatial coverage of surveys by season.  Each segment is coloured by the associated water depth. Seasons are 
defined in Table 1.4. Red polygons delineate SPAs, irrespective of species designation. 
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Figure 1.4.   Temporal coverage of surveys by season and year. Seasons are defined in Table 1.4.   
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Figure 1.5.   Spatial distribution of species detections, pooling surveys across all seasons and years. Species labels in the leg-
end refer to modelled species units listed in Table 1.1. Most recent data are shown on top; though presented in transparent col-
our, species units with fewer detections may be behind species with greater number of detections. Red polygons delineate 
SPAs designated for one or more species within each species unit in each panel.    
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1.2.3 Distance sampling analysis 

Distance sampling analyses were conducted for each species unit by pooling 
data across all surveys. When fitting detection functions, the effects of covari-
ates, other than perpendicular distance, are incorporated into the detection 
function model directly (Multiple Covariate Distance Sampling, MCDS) 
(Buckland et al., 2001; Marques & Buckland, 2004; Marques et al., 2007). Half 
normal and hazard rate functional forms were trialled for the relationship of 
detectability with distance and the candidate variables that might affect this 
relationship were bird group size, behaviour (sitting vs flying), observer, and 
sea state (Table 1.5). BIC was used to choose between competing models 
(functional form and variables). Further details on the distance sampling 
methodology are provided in Appendix 2.  

1.2.4 Spatial model fitting and selection 

The outputs from the detection function analysis give a detectability-corrected 
count in a small area (segment). The spatial modelling process was under-
taken using a generalised additive model framework with an error family 
suitable for count per unit area response data, the Tweedie distribution. Seg-
ment area was therefore included as a log-scale offset term in the model. 

Candidate variables included a set of one-dimensional terms, water depth and 
distance to coast, that were permitted to change linearly or non-linearly with 
the response, and a two-dimensional term using geographic coordinates to 
account for surface patterns, which could be result from unmodelled environ-
mental variability.  The flexibility of any smooth functions (1D or 2D) was 
determined using BIC, whilst the more computationally intensive 5-fold 
cross-validation was used to choose between competing models (inclusion or 
exclusion of variables). 

The response data were collected along survey lines in sequence, and so consec-
utive observations were likely to be correlated in space and time. With a spatial 
term included, any resulting temporal autocorrelation in model residuals was 
accounted for by using robust standard errors as part of the modelling frame-
work. These essentially inflate the standard errors in relation to the positive cor-
relation observed within pre-specified blocks (here, transects) of residuals. 

All models were fitted using the MRSea R package (Scott-Hayward et al., 
2023; R Core Team, 2024). and subjected to various diagnostic checks (e.g. as-
sessment of the assumed mean-variance relationship, a key assumption 
check). Further methodological details on model specification, fitting, and di-
agnostics are available in Appendix 2. 

Table 1.5.   Candidate covariates for detection functions. 
Name Covariate type # Parameters Description 
Group size Continuous 1 Bird group size 
Behaviour Categorical 1 S (sitting or diving) and F (flying or flushing) 
Observer Categorical >1 Observer initials. Observers were merged to “Other” 

category when they had <30 observations in total, or no 
observations in any one distance band 

Sea state Categorical 8 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 (calm to rough) 
Sea state (4) Categorical 4 0, 1, 2, 3 (calm to rough) 
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1.2.5 Model predictions 

Using the best selected model for each species unit, predictions of counts were 
made to a grid of points (each point representing a 1km2 grid cell) across the 
study area. The uncertainty in the detection function was estimated using a 
parametric bootstrap (n=500) of the fitted distance sampling model. This gen-
erated new estimated counts for each segment. The best selected spatial model 
was then re-fitted to each of the new datasets to obtain a new set of parameter 
estimates for the model. The final output of this process was a parametric 
bootstrap procedure using the robust variance-covariance matrix from each 
parametric bootstrap model. These were used to calculate 500 sets of model 
predictions for every grid cell in the study area. To obtain 95% percentile-
based confidence intervals and a coefficient of variation for each grid cell, the 
2.5% and 97.5% quantiles of the 500 bootstrap predictions were taken along 
with the standard deviation. The distribution maps and sets of bootstrap pre-
dictions were used as inputs to the risk-ranking algorithm, as detailed in the 
section 1.1.5.  

1.3 Breeding colonial bird species utilization of marine areas 
In this section we analyse GPS and colony count data to explore space utilisa-
tion of four seabird species to assess how these types of output may be in-
cluded as inputs to the spatial risk-ranking algorithm.  Whilst this has not 
been included at this stage, we discuss this possibility in the discussion. Under 
this part of the project, we used results from 95 GPS tagged birds of four spe-
cies from six breeding colonies in Denmark from 2023 and 2024 combined 
with breeding bird colony census data from 2010 to 2023 to describe, model 
and evaluate their utilization of Danish marine areas.  

1.3.1 Study species 

Four species of differing abundance, distribution and foraging behaviour typ-
ical of Danish breeding seabird species were selected: 

• Lesser black-backed gull (Larus fuscus). An opportunist species, foraging 
on various prey items on land and at sea, breeding in relatively few colo-
nies throughout the country. The breeding population has been increasing 
and is currently approx. 4,500 pairs (Danish Database on Colonial Coastal 
Birds, Dept. of Ecoscience, Aarhus University, unpublished data). The 
lesser black-backed gull is a long-distance migrant, most wintering along 
coastlines of Southwest Europe and Northwest Africa. 

• Sandwich tern (Thalasseus sandvicensis). A specialist plunge-diving, surface 
feeding fish-eating tern, primarily dependent on sandeels (Ammodytidae), 
breeding at a few, widely dispersed colonies. The breeding population has 
been fluctuating and is currently approx. 3,000 pairs. The Sandwich tern is 
a long-distance migrant, wintering along the western coast of Africa. 

• Arctic tern (Sterna paradisaea). A generalist tern, feeding on small fish and 
crustaceans caught at the sea surface. In Denmark, it breeds mostly in rel-
atively small colonies, numbering 2,300 breeding pairs. The Arctic tern is 
a long-distance migrant, wintering in the Southern Ocean. 

• Common guillemot (Uria aalge). A specialist deep-diving auk, feeding 
mostly on clupeid fish, mainly confined to one Danish colony on 
Græsholmen near Bornholm. The breeding population has been increas-
ing, and the current size is unknown. The common guillemot is resident in 
the Baltic throughout the year. 
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1.3.2 Breeding colonies 

GPS tags were deployed on colonial breeding birds in spring 2023 and 2024 at 
six locations in Denmark. The colonies were Sprogø, Als Odde, Krik Sandø, 
Hirsholm, Græsholmen near Christiansø and Klægbanken (Figure 1.5). 

1.3.3 GPS tagging 

PathTrack GPS tags were deployed on 95 breeding birds as follows: 26 lesser 
black-backed gulls at Sprogø, Klægbanken and Hirsholm, 25 Sandwich terns 
at Krik Sandø, Sprogø and Hirsholm, 25 Arctic terns on Krik Sandø and Als 
Odde and 19 common guillemots on Græsholm. Most birds were tagged in 
2023 (90) and five birds were tagged in 2024 (Table 1.6). Most tagged birds 
were incubating eggs at the time of tagging, but some common guillemots had 
recently hatched chicks. 

Birds were tagged with different devices according to species, which affected 
attachment and download methods (Pathtrack Ltd, West Yorkshire, UK) (Ta-
ble 1.7). 

  

Figure 1.6.   The geographical 
distribution of 450 recorded-
breeding colonies in Denmark 
where at least one of the four 
species have been recorded 
breeding between 2010 and 2022 
(Danish Database on Colonial 
Coastal Birds, Dept. of Ecosci-
ence, Aarhus University, un-
published data). 

 

Table 1.6.   The number of GPS tagged birds from four species at six coastal bird colonies during the breeding seasons of 2023 
and 2024. The number given in bold represents the number of tags fitted to birds, the number in brackets those that provided 
data for the analysis.  

Lesser black- backed 
gull 

Sandwich tern Arctic tern Common 
guillemot 

  2023 2024 2023 2024 2023 2024 2023 2024 

Krik Sandø   9 (9)  5 (5)    
Græsholmen       14 (12) 5 (4) 

Sprogø 8 (7)  6 (6)      
Klægbanken 8 (8)        
Hirsholm 10 (8)  10 (10)      
Als Odde     20 (14)    
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1.3.4 GPS data analysis 

Data from the GPS-tagged birds were selected from individuals that suc-
ceeded in breeding. We analysed the distance of each bird travelled from its 
colony over time, visualizing this as a time series. For many birds, a consistent 
maximum distance from the colony was evident, beyond which they did not 
typically travel. This threshold was similar across individuals of the same spe-
cies. However, some lesser black-backed gulls exhibited periodic, extended 
deviations beyond their maximum distance, lasting several days, after which 
they returned to the colony and resumed typical behaviour. These intermit-
tent deviations suggested a lack of nesting, so we excluded these birds’ rec-
ords entirely from the breeding dataset. For one bird that left the colony per-
manently—indicated by sustained departures beyond their normal maximum 
distance—we excluded only the data after they departed, retaining earlier rec-
ords for analysis. Distribution data was used from the day of tagging until 31 
July of each year for all species. Points over land were removed from the anal-
ysis using the EEA coastline dataset (European Environment Agency, 2017). 

For each bird species, we fitted a generalized additive model (GAM) with a 
binomial error distribution and a logit link function, estimated using re-
stricted maximum likelihood (REML) using the mgcv  (v1.8-34; Wood, 2011) 
and scam (v 1.2-17, Pya & Wood, 2014; Pya, 2024) packages in R version 4.3.3 
(2024) to model the geographical utilization of the marine area, based on the 
GPS tag data.  

For this modelling approach we needed to create pseudo-absence points. 
Across the extent of the presence points for each species, defined by creating 
a raster dataset with a resolution of 0.01 degrees and extent of the records for 
a species, points were created in random locations using the R package dismo 
(Hijmans et al. 2023). More points than were needed were created, then 
pseudo-absence points within 10m of any individual bird track location were 
removed to reduce the possibility of the pseudo-absence points confounding 
the models’ ability to differentiate conditions associated with presence and 
absence. Finally, a random selection of the remaining points was selected to 
equal the number of presence points. 

The model used the spline-smoothed distance to coast, the distance to the col-
ony as well as bathymetry (water depth) as covariates. For sandwich tern, 

Table 1.7.   PathTrack GPS tag models used for the four avian species in this project. Tag data communication method 
(Data upload), weight, attachment methods and GPS position collection frequency are given.  
Species Model Data upload Weight 

(max) 
Attachment 
method 

Extra 
sensors 

GPS frequency 
(breeding season) 

Common guillemot nanoFix 
GEO+RF 

Local base  
station (UHF) 

13 g Taped to 
back feathers 

Depth 
sensor 

10 min 

Arctic tern nanoFix 
GEO+RF Mini 

Local base  
station (UHF) 

2.75 g Taped to 
back feathers 

 15 min 

Sandwich tern nanoFix 
GEO+RF Mini 

Local base  
station (UHF) 

3.25 g Teflon ribbon 
harness 
round legs on 
back 

 10 min 

Lesser black-
backed gull 

nanoFix 
GEO+GSM 

GSM network 18 g Teflon ribbon 
harness 
round legs on 
back 

 5 or 10 min 
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“distance to coast” was smoothed monotonically decreasing. For lesser black-
backed gull “distance to coast” and “distance to colony” both were smoothed 
monotonically decreasing and “bathymetric depth” monotonically increas-
ing. For the common guillemot, breeding almost solely in one Danish colony, 
including distance to coast would have predicted bird presence around coast-
lines across Denmark, and therefore only unsmoothed “distance to colony” 
was used in the model. For common guillemot a two-dimensional smooth of 
the geographical coordinates was also included. This was possible because the 
Christiansø area is the only breeding area for the species in Denmark, and 
therefore it was not necessary to model the utilization of sea areas away from 
the common guillemot breeding colony. Based on the results from these mod-
els, the aim was to model the potential spatial distribution and utilization of 
these lesser-black backed gull, sandwich terns and arctic terns throughout the 
Danish waters from all their other colonies and for common guillemot around 
their one colony. This was carried out using the existing database of the size 
(i.e. number of breeding pairs) and distribution of all known breeding colo-
nies throughout Denmark gathered in most recent years (see below). The 
GAM model was then used to predict the extent and distribution of their use 
of marine areas out from all the Danish nesting colonies, weighing each col-
ony according to the number of breeding pairs at the site.  

For sandwich tern, the most recent data on colony-specific breeding abundance 
from 2023 was used, that for arctic tern was from 2022. The latest lesser black-
backed gull data used originated from 2019, because the 2023 data was incom-
plete, and 2022 data lacked data for lesser black-backed gull from two of the 
three colonies in which the birds were tagged. For common guillemot, 
Græsholmen is the only colony in Denmark (hence no weighing was required). 
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2 Results 

2.1 Aerial survey data analysis 
Observer and group size were the most frequently selected covariates to ex-
plain detection probability (Table 2.1) for each species or species group that 
were modelled together as a species unit (Table 2.1). The northern gannet, 
common scoter and lesser black-backed gull were estimated with the highest 
probabilities of detection (p > 0.3) while grebes were estimated the lowest 
probabilities (p < 0.21). Unsurprisingly, given the large number of detections, 
after adjusting for detectability, the common eider and common scoter were 
estimated to be the most abundant species units in the area covered by the 
surveys (Table 2.1). 

Spatial analysis results for each species unit are summarized in Table 2.2. Spa-
tial estimates of counts, associated uncertainty, and model diagnostics are 
provided for each species unit in Appendix 3. 

  

Table 2.1.   Summary of distance analysis results. Num par. = number of parameters, P(d) = average detection probability, SE = 
standard error, GOF χ2= Chi-square goodness-of-fit test statistic, Ndet = sample size of species detections. Species unit = label 
indicating species or species groups that were analysed together as a unit (Table 1.1).     

Species unit Key Covariates 
Num. 
par 

P(d) SE x 100 
GOF 
χ2 

Ndet 

Alcid hr ~ Behaviour + Group size + Sea state (4) 7 0.215 0.17 0.16 14855 

Diver hr ~ Observer + Behaviour + Group size 10 0.219 0.39 0.44 4265 

Eider hr ~ Observer + Group size 17 0.257 0.17 8.47 37049 

Fulmar hr ~ Group size 3 0.277 0.93 0.08 1521 

Gannet hr ~ Observer + Group size 10 0.341 0.57 72.95 6111 

GBBG hr 
 

2 0.238 0.62 0.00 2523 

Goldeneye hr ~ Group size + Observer 10 0.243 1.18 0.16 975 

Grebe hn ~ Observer 3 0.209 0.57 9.40 892 

Gull hr ~ Group size 3 0.253 0.26 0.03 15341 

Kittiwake hr ~ Group size 3 0.250 0.50 0.00 3207 

LBBG hn 
 

1 0.302 1.42 2.74 272 

Littlegull hr 
 

2 0.201 1.29 0.00 304 

Longtailed hr ~ Observer + Group size + Behaviour 11 0.225 0.24 0.31 8760 

Merganser hr ~ Observer + Group size + Behaviour 9 0.244 0.61 6.27 3220 

Scoter hn ~ Observer 21 0.326 0.12 426.47 54570 

Tern hr 
 

2 0.228 0.83 0.00 1143 

Velvetscoter hr ~ Observer + Group size 9 0.262 0.40 0.17 5345 
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2.2 Relative risk-mapping 
The spatial risk-ranking algorithm was executed in a step-wise fashion for 
each of the three hazards: habitat overlap, displacement risk, and collision risk 
(Figure 1.2). Because the outputs of each step builds upon the previous step, 
understanding each step and associated assumptions is important for the in-
terpretation of the final output. We have therefore structured the results to 
follow this step-wise workflow. We discuss the results of each hazard first 
(Figures 2.2, 2.4-5), and the influence of the modelled species distributions and 
key input parameters on these outputs. These include the spatial range and 
heterogeneity in each species distibution (Figure 2.1), the inclusion of SPA 
designations in the algorithm (Figure 2.2), and the spatial extent of displace-
ment parameter (Figure 2.6). We then describe the final output showing the 
highest-ranking areas across the three hazards (Figure 2.7, top panel), and as-
sociated uncertainty (Figure 2.7 and Figure 2.8). To facilitate discussion of rel-
ative risks for each species, we summarize species-specific values within the 
highest and lowest-ranking areas of the combined map (Figure 2.7, top panel). 
For illustration purposes, we chose the top and bottom quartiles (25% and 
75%) for this summary (Figure 2.4 and Figure 2.5).  

Habitat overlap: The spatially relative species risk for habitat overlap was the 
highest for species units with geographically narrow distribution ranges in 
inshore areas, with multiple SPAs designated for the modelled species (Figure 
2.1., Figure 2.2., Table 1.2). The highest-ranking areas for habitat risk were 
maintained when SPA designations were excluded from the algorithm (Fig-
ure 2.3.), indicating that the designated areas successfully captured the high-
use areas for these species. The highest-risk areas overlapped most with the 
core areas of divers and common scoters, with 0.41 and 0.26 of the species 
ranges exceeding the HPL, respectively (Figure 2.4.). Areas identified as the 

 Table 2.2.   Summary of spatial modelling results. Num. par = number of parameters, Dispersion par. = dispersion parameter, 
CV score = cross-validation score. Candidate models included 1-dimensional terms (water depth or distance to coast) both with 
and without 2-dimensionsal surface estimate (1D2D and 2D Only models, respectively).  

Species unit Best model 1D terms 
Num. 
par 

Dispersion 
par. 

CV  
score 

Abun-
dance 

Lower 2.5% Upper 97.5% 

Alcid Best 1D2D Water depth 16 36.1 36.3 95755 85812 114641 

Diver Best 1D2D Water depth 19 28.9 3.4 16764 15487 20186 

Eider Best 1D2D Dist. to coast 15 305.4 1814.5 510816 492783 585157 

Fulmar Best 1D2D Dist. to coast 18 48.2 6.3 43772 72695 113345 

GBBG Best 1D2D Dist. to coast 13 130.2 18.5 15649 10604 30635 

Gannet 2D Only  16 42.1 1.5 15890 12017 24032 

Goldeneye 1D Only Water depth 2 260.1 22.0 12746 12185 17957 

Grebe 2D Only  14 159.1 6.9 5806 4833 8187 

Gull Best 1D2D Dist. to coast 25 205.3 239.1 98280 122159 177780 

Kittiwake 2D Only  12 37.3 1.9 9514 9503 12335 

LBBG 2D Only  16 59.5 0.3 706 545 1385 

Littlegull Best 1D2D Dist. to coast 14 101.8 0.6 1450 1111 2418 

Longtailed Best 1D2D Dist. to coast 4 171.9 92.9 39944 34303 48936 

Merganser 2D Only  10 64.1 15.0 19980 18410 23538 

Scoter 2D Only  8 5555.6 127899.2 740599 657798 905214 

Tern Best 1D2D Water depth 15 91.3 3.4 4198 3461 6351 

Velvetscoter Best 1D2D Water depth 12 91.7 15.6 41962 37092 50483 
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lowest relative risk overall still overlapped with the core areas of great black-
backed gulls, grey gulls, and alcids, though to a lesser extent than in the high-
est-risk areas (Figure 2.5). For alcids, the reduction in habitat overlap from the 
highest to lowest risk areas was 77%. 

Displacement risk: The highest relative risk areas for displacement were simi-
larly found inshore (Figure 2.2). The species units identified as highest risk 
from displacement included the grebes, velvet scoter, common scoter, and the 
divers (Figure 2.4). Though divers maintained a risk ratio higher than other 
species in the lowest-risk areas, the average displacement risk ratio for divers 
was reduced by almost 80% compared to the highest risk areas (Figure 2.5).  

The relative risk surface for displacement was less heterogenous, i.e., 
smoother, than the relative risk surfaces for habitat overlap and displacement 
(Figure 2.2).  This is because the expected number of displaced birds at each 
spatial location not only accounted for the density of birds in the 1 km2 grid 
cell, but also its neighbourhood, depending on the spatial extent of displace-
ment parameter specified for each species unit (Table 1.2). To demonstrate the 
influence of the input parameter on the mapping of displacement, we re-re-
calculated the number of displaced birds under three alternative values for 
the spatial extent of displacement (βi, km), with alcids as an example (Figure 
2.6). The figure illustrates that specifying a larger spatial extent of displace-
ment increases both the magnitude of the displacement metric and creates 
smoother patterns in space than when specifying a more localized effect of 
displacement. 

Collision risk: The collision map identified several potential hotspots of relative 
risk further offshore (Figure 2.2). The species units identified as having the 
highest relative risk from collision included the kittiwake and other gull spe-
cies (Figure 2.4). Compared to the highest-risk areas, areas identified as the 
lowest risk reduced the average relative collision, as well as displacement and 
species risk values for all species units except for alcids (Figure 2.4, Figure 
2.5). For alcids, the only relative risk reduction related to habitat overlap. 
However, the collision risk ratios for grey gulls, little gulls and the longtailed 
duck remained high compared to other species in the areas identified as low-
est combined risk (Figure 2.5). 

Combined map: The final output of the spatial risk-ranking algorithm (Figure 
2.7, top panel) combined the highest-ranking areas across the three hazards 
(i.e., the three panels in Figure 2.2). Despite combining the three spatially rel-
ative risk maps by their maximum value, the combined map identified areas 
that ranked relatively low across all three hazards, compared to other marine 
areas in Denmark. These included two offshore areas in the North Sea, an area 
in Skagerrak northeast of Jutland, and an area east of Bornholm in the Baltic 
Sea (Figure 2.5 and Figure 2.7, top panels). However, uncertainty in the spe-
cies distribution modelling led to uncertainty in the ranking of large parts of 
the area east of Bornholm (Figure 2.8, middle panel). The area northeast of 
Jutland had a higher risk of exceeding the specified HPLs compared the two 
offshore areas in the North Sea ( Figure 2.8 middle panel and Figure 2.9 top 
panel). Despite the uncertainty in the species distributions, the algorithm was 
able to consistently identify the majority of Danish marine waters as either 
higher or lower risk than other areas in 95% of the bootstraps (Figure 2.9 mid-
dle and bottom panels). 
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Figure 2.1.   A comparison of relative habitat risk for two species units (Alcids top four and Scoters bottom four) with the same 
target protection level (TPL) but with different distribution and range (sliding grey scale) and SPA designations (red). For each 
species unit, the panels also illustrate the calculation of the habitat risk ratio, which represents the relative species risk and final 
output for this hazard in Step 1 of the algorithm (Figure 1.2). The top left panel shows the estimated density distribution, and top 
right the habitat risk ratio. Bottom left panels show the species unit abundances as cumulative percentiles (up to 0.95, defining 
species range), while the bottom right panel shows top use areas as cumulative percentiles of the species range  (i.e., the nu-
merator of the habitat risk ratio 𝑞𝑞𝑖𝑖,𝑥𝑥) (Figure 1.2).  Top four panels: Razorbill/common guillemot (species unit Alcid), with spatially 
extensive species range with little overlap between core and designated areas. Bottom four panels: Common scoter, with more 
limited species range and core areas covered by SPAs. Purple contours indicate, for reference, areas identified as relatively low 
combined risk to all species units in Figure 2.5. Blue symbols show existing wind turbines. Red polygons delineate SPAs that 
are designated for one or more species included in each species unit. Equivalent maps for all species units are available in Ap-
pendix 3. Species units are individual species or species groups modelled together, and are listed in Table 1.1 
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Figure 2.2.   The spatially relative 
risk for habitat overlap, displace-
ment, and collision, expressed as 
quantiles of values across each 
surface.  These maps represent 
the ranking of areas by the maxi-
mum relative species risks for 
each hazard in Step 3 of the al-
gorithm (Figure 1.2). The maxi-
mum relative species risks were 
obtained as the maximum risk ra-
tios for each grid cell in Step 2 of 
the algorithm (Figure 1.2) across 
all modelled species units (indi-
vidual species or species groups 
modelled together, Table 1.1).  
Blue symbols show existing wind 
turbines. Red polygons delineate 
SPAs, irrespective of species 
designation. 
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Figure 2.3.   The risk of habitat 
overlap (top and middle panels) 
and combined spatially relative 
risk across all three hazards (bot-
tom panel), when excluding SPA 
designations from the risk-rank-
ing algorithm. Red polygons de-
lineate SPAs, irrespective of spe-
cies designation. Top panel: the 
maximum habitat risk ratio across 
species, representing the output 
of Step 2 of the algorithm for this 
hazard (Figure 1.2). Middle 
panel: the number of species 
units  (individual species or spe-
cies groups modelled together, 
Table 1.1) that exceeded the HPL 
threshold. For example, blue 
means that one species unit ex-
ceeds the threshold in the area, 
while green means no species 
unit exceed the threshold. Bottom 
panel: the combined spatially rel-
ative risk map, showing the high-
est-ranking areas across the 
three hazard maps (habitat over-
lap, displacement, collision) when  
SPA designations were excluded 
from the algorithm to produce 
each panel. The combined map 
represents the final output of the 
algorithm (Figure 1.2). Blue sym-
bols show existing wind turbines.   
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Figure 2.4.   Areas identified as the highest spatially relative risk to species for each of the three hazards (top panel) and asso-
ciated risk ratio values for each species unit (bottom panel). Average disturbance and collision risk ratio values are shown for 
areas in the combined hazard map that exceed the third quartile (75% quantile), i.e., the intersection of the areas shown in the 
top panel. Habitat overlap (the proportion of the area where relative habitat risk > 0) for each species unit in the bottom panels 
are shown without adjustment to SPAs. Species labels in the legend represent modelled species units (individual species or 
species groups modelled together) listed in Table 1.1 
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Figure 2.5.   Areas identified as the lowest spatially relative risk to species across all three hazards (top panel, purple areas) 
and associated risk ratio values for each species unit (bottom panel). Average disturbance and collision risk ratio values are 
shown for areas in the combined map that do not exceed the first quartile (25% quantile). Habitat overlap (the proportion of the 
area where relative habitat risk > 0) for each species unit in the bottom panels are shown without adjustment to SPAs. Species 
labels in the legend represent modelled species units (individual species or species groups modelled together) listed in Table 
1.1. 
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Treating each of three hazards with equal weight, the combined map identi-
fied two main areas that were lower in relative species risk than other marine 
areas in Denmark, namely west of Nordjylland and north and east of Born-
holm, near the Ertholmene SPA designated for breeding common guillemot 
and razorbill (Figure 2.5, Figure 2.7). The area north and east of Bornholm was 
associated with higher uncertainty in species distribution estimates (Figure 
2.7, Figure 2.8). Across bootstrap estimates, areas west of Nordjylland did not 
cross the HPL threshold for any species >90% of time (Figure 2.8). The area 
was also selected as the lower 50% risk area for collision and disturbance in 
the majority of bootstrap redraws of the two hazard maps (Figure 2.8).  

 

Figure 2.6.   An illustration of 
how the spatial extent of dis-
placement parameter (βi, km) in-
fluences the expected number of 
displaced birds at each grid cell 
location. Example based on ra-
zorbill/common guillemot (species 
unit: Alcid). Blue symbols show 
existing wind turbines. Red poly-
gons delineate SPAs, irrespective 
of species designation. 
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Figure 2.7.   The main output of 
the spatial risk-ranking algorithm 
with associated uncertainty (top 
and middle panels) and average 
number of species units that ex-
ceeded HPL thresholds (bottom 
panel).  Top: the combined spa-
tially relative risk map, showing 
the highest-ranking areas across 
the three hazard maps (habitat 
overlap, displacement, collision). 
The combined map represents 
the final output of the algorithm 
(Figure 1-2). Middle panel: coeffi-
cient of variation (CV) across 500 
re-draws of the combined map 
based on bootstrapped count es-
timates. Bottom panel: the aver-
age number of species units that 
exceeded the HPL threshold over 
500 bootstraps. Blue symbols 
show existing wind turbines. Red 
polygons delineate SPAs, irre-
spective of species designation. 
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2.3 Breeding colonial birds 
The data from the GPS tagged birds showed that the tern species generally 
utilize marine areas close to land, with the exception of the lesser black-backed 
gull which used more offshore areas than the terns and furthermore also for-
aged far inland. Common guillemots utilized marine water at medium dis-
tances from land, compared to the other three species. The analyses presented 
here are based on data from the time of tagging up until 31 July of each year. 
Thus, the utilization of the marine area is not necessarily confirmed to the near 
area of the colonies, as many birds will have left the breeding colony before 
that time. 

Figure 2.8.   Percentage of boot-
strapped risk maps that ex-
ceeded HPL threshold for at least 
one species unit (top panel) or 
50% quantiles for displacement 
or collision (middle and bottom 
panels).  The top panel can be in-
terpreted as the risk of not 
achieving the assessment target 
for habitat overlap (HPL) for at 
least one species in each 1x1 
km2 grid cell, should it overlap 
with a wind farm footprint in the 
future. The red areas in the mid-
dle and bottom panels can be in-
terpreted as high confidence in 
the ranking of marine areas as 
higher risk than other areas in 
terms of displacement and colli-
sion, respectively. Blue symbols 
show existing wind turbines.  Red 
polygons delineate SPAs, irre-
spective of species designation.   
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2.3.1 Sandwich tern 

GPS tags were deployed on a total of 25 sandwich terns, producing a total of 
116,077 positions. Of these, 112,487 positions were obtained before 1 August 
2023 (Figure 2.9.). 

Based on GPS-positions from 25 sandwich terns from the three colonies, 
Sprogø, Hirsholm and Krik Sandø, the marine utilization by sandwich terns 
up until 31 July was modelled. The results showed that the birds were mostly 
found in coastal waters. Highest utilization was the west coast of Jutland and 
particularly the southeastern parts of Danish North Sea (Figure 2.10.). 

2.3.2 Arctic tern 

GPS tags were deployed on 25 arctic terns in the Als Odde and the Krik Sandø 
colonies. Of those, 19 tags produced positions for the birds, providing a total 
of 2,785 positions. Most of these tags regretably felt off the birds after a very 

Figure 2.9.   Tracking data from 
25 Sandwich Terns during sum-
mer 2023. 

 

Figure 2.10.   The estimated 
sandwich tern average presence 
in the marine area during the 
breeding season, up until 31 July. 
The colonies of 2023 used for the 
model are shown, indicating the 
number of breeding pairs in the 
colonies that year.  Average pres-
ence was not weighted by colony 
size. 
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short time. Only six birds produced more than 100 positions. Tags were de-
ployed on 22 and 24 May 2023, and the longest period for data delivery by a 
bird was up until 4 June. The arctic terns utilised areas close to the colony 
more than was the case for sandwich tern (Figure 2.11.). This may be because 
the time window for the tagging was rather short and did not include the post-
breeding period. Thus, these birds were more confined to waters close to the 
colonies than was the case for later summer situations for sandwich tern. 

Using the distribution pattern from those two colonies and information on 
breeding colonies and sizes from 2022 the arctic tern utilization of the marine 
areas was modelled, indicating that the species used coastal or shallow waters 
(Figure 2.12.). 

Figure 2.11.   Tracking data from 
19 Arctic Terns during summer 
2023. 

 

Figure 2.12.   The estimated arc-
tic tern average presence in the 
marine area during the breeding 
season, up until 4 June. The col-
onies of 2022 used for the model 
are shown, indicating the number 
of breeding pairs in the colonies 
that year.  Average presence was 
not weighted by colony size. 
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2.3.3 Lesser black-backed gull 

GPS tags were deployed on 26 lesser black-backed gulls at the Sprogø, 
Klægbanken and Hirsholm colonies. Of those, 23 tags produced positions 
from 24 birds (one tag, Tag 19331, was re-used on a different bird after falling 
off the first bird), providing a total of 335,287 positions. Lesser black-backed 
gulls utilized both marine and terrestrial areas over the summer, and in the 
marine areas moved much further offshore than was the case for the tern spe-
cies (Figure 2.13.). 

Lesser black-backed gulls utilized both coastal and more offshore areas over 
the breeding season and the summer, though the coastal areas are most im-
portant for them. They utilized the western parts of the Danish North Sea less 
than the inner Danish waters and the eastern Danish North Sea (Figure 2.14.). 

Figure 2.13.   Tracking data from 
24 lesser black-backed gulls dur-
ing summer 2023.   

 

Figure 2.14.   The estimated 
lesser black-backed gull average 
presence in the marine area dur-
ing the breeding season, up until 
31 July. The colonies of 2019 
used for the model are shown, in-
dicating the number of breeding 
pairs in the colonies that year.  
Average presence was not 
weighted by colony size.   
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2.3.4 Common guillemot 

GPS tags were deployed on 19 common guillemots on Græsholmen near 
Christiansø, 15 in June 2023 and four in June 2024. Of those, 16 tags produced 
positions, providing a total of 9,077 positions. 

Common guillemots feed primarily on small fish. They utilized the sea in all 
directions around Christiansø (Figure 2.15.). 

The area northeast of Bornholm was used most intensively by common guil-
lemots over the breeding season (Figure 2.16.). The tags fell off the birds after 
a relatively short period of time, producing data from between two and 17 
days. Since Græsholmen is the largest breeding colony of common guillemot 
in Denmark, with the only other small colony at nearby Hammeren, the mod-
elled utilization of the marine areas is based on the data from Græsholmen 
directly, with no procedure to estimate utilization of the sea from other colo-
nies. 

Figure 2.15.   Tracking data from 
16 common guillemots during 
summers of 2023 and 2024.     

 

Figure 2.16.   The estimated 
common guillemot average pres-
ence in the marine area during 
the breeding season, up until 21 
June. The colonies are shown, in-
dicating the approximate number 
of breeding pairs. Average pres-
ence was not weighted by colony 
size. 
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3 Discussion 

We have developed and presented an approach to map relative risk to sea-
birds from future offshore wind energy developments throughout Danish 
marine waters. Risks for each hazard (habitat alteration, displacement, colli-
sion) were quantified relative to explicit assessment targets and according to 
their respective pathways of impact (Figure 1.1, Figure 1.2). The proposed 
spatial risk-ranking algorithm uses quantitative input parameters that can be 
informed by results from empirical displacement studies, collision risk mod-
elling, and population modelling. Another advantage of the fully quantitative 
algorithm is that uncertainty can be propagated through the entire process. 
While we consider the results preliminary and outline several important ca-
veats for their use below, the developed framework provides a foundation to 
refine the algorithm and accumulate upon additional empirical evidence to 
reduce assessment uncertainty. We also discuss results from the tracking data 
analyses that shed light on areas and hazards that have not yet been imple-
mented in the spatial risk-ranking algorithm. 

3.1 Risk-mapping: use notes and caveats 
The results in this report can be used to identify potential development areas 
that minimize the risk of habitat alteration, displacement and collision to the 
modelled seabirds within the study area of Danish marine waters. The maps 
should not be used to extrapolate risks for non-modelled species, life history 
contexts, or hazard types not currently implemented in the algorithm, such as 
effects during the breeding season, barrier effects during daily commuting be-
tween colonies and at-sea foraging areas, or collision risk during migration. Im-
portantly, the spatial risk-ranking was based on species density distributions 
estimated from aerial survey efforts focused on the winter and spring seasons, 
and to a smaller degree on summer and autumn distributions (Figure 1.3). Dur-
ing primary wind feather moult in late summer, many waterbirds are flightless 
for a three-week period, a time in which they are very sensitive to human dis-
turbances. Data from this period of year is limited in this present analysis. This 
should be born in mind when interpreting the relative risk maps. 

The input parameters describing the susceptibility of each species to collision 
and displacement were derived from published literature. The parameter val-
ues for each species were selected to average over reported effects from dif-
ferent studies, which could vary e.g., in offshore wind farm design and loca-
tion (Section 1.1.4). The presented relative risk maps are therefore based upon 
current knowledge of impacts, pooled across different exposure contexts. The 
assessment did not consider different development scenarios or future 
changes in offshore wind farm design, such as wider spacing of larger tur-
bines. It is possible that such changes, or other time-dependent processes such 
as habituation, will influence the susceptibility of different species to hazards 
differently, and consequently the distribution of relative species risks in space. 
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An important difference to previous sensitivity mapping approaches is that 
the maps presented here combine multiple species by maximum values, ra-
ther than sums or weighted averages, at any given location. This means that 
a high relative risk for one species cannot be compensated for by multiple 
low-risk species at the same location. This ensures a precautionary approach 
where the maps can be used to minimize risk for all species given their assess-
ment targets, rather than the majority of species of concern. 

The maps represent ranking of areas by relative species risk, which cannot be 
used to evidence negligible impact on seabird populations. Spatially relative 
risk means that values in each grid location are ranked with respect to all other 
grid locations in the study area. Relative species risk means that the risk posed 
by the three hazards (habitat overlap, displacement, and collision) are ex-
pressed relative to the user-specified assessment targets, target protection 
level (TPL) and habitat protection level (HPL). Furthermore, the combined 
map treats each of the three hazards as equal concern for populations. In re-
ality, the same number of birds impacted by habitat alteration, displacement, 
or collision are likely to have three different levels of population impact. It is 
also important to note that the current approach to quantifying relative habi-
tat risk considers all habitat alteration as unwanted, which does not account 
for potential positive effects, e.g., through reef effects or habitat enhancement. 
However, it would be possible to include such effects in the algorithm when 
more knowledge becomes available about possible positive effects of offshore 
wind farm structures for some species. 

We present results for species units, some of which combined more than one 
ecologically similar species (Table 1.1). This approach was considered a prag-
matic first approach to the multi-species assessment, as not all species are fully 
identifiable from aerial surveys. Because abundance estimates were made for 
each species unit, and maximum values were used to combine relative risks 
across multiple species, this choice did not influence the weighting of individ-
ual species on the multi-species hazard maps for habitat overlap, displace-
ment and collision. In other words, the combined relative risk maps based on 
species units would be the same as maps based on individual species, as long 
as the input parameters for each species within each species unit were speci-
fied to be the same. However, it is worth noting that the maps presenting 
number of species exceeding HPL thresholds (Figure 2.3. middle panel, Figure 
2.7. bottom panel) summarize the number of species units, rather than indi-
vidual species.  

The presented spatially relative risks were informed by cross-sectional sur-
veys, rather than individual-based monitoring data, and as such, assume that 
spatially relative risks are proportional to species density. In other words, the 
approach does not account for any heterogeneity in space use or susceptibility 
to hazards within each population. Actual risks to populations emerge from 
the risks accumulated to their constituent individuals, which can vary within 
and between individuals over time and space. Cross-sectional metrics of im-
pact can be expected to proxy actual impacts in well-mixed populations with 
space use resembling the ideal free distribution. However, the approach may 
under- or over-estimate risks when the population is not well-mixed, such as 
due to individual site fidelity, or differential exploitation of resources between 
age- and sex-classes. 

The density distribution estimates underpinning the risk surfaces were gen-
erated by pooling aerial surveys across different seasons and multiple years 
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(1999-2024). To model species whose presence in Danish marine waters is 
strongly seasonal, data were a-priori excluded from seasons when they were 
considered absent (Table 1.4). The spatial patterns of risk therefore represent 
a long-term average of when the species are expected to be seasonally present 
in Denmark, and do not account for any changes in species abundance or den-
sity during the 25-year survey period.  

The density distribution maps were estimated without correcting for availabil-
ity bias (Dunn et al., 2024). This means that the presented estimated abundances 
can somewhat under-estimate the underlying, true abundance of birds present 
in Danish waters, particularly for diving species such as auks and divers. 

3.2 Breeding and migratory birds 
Spatial usage of the marine areas by colonially breeding birds over the sum-
mertime was estimated based upon GPS tagging data, but not yet imple-
mented in the risk-ranking algorithm (see section 2.3).  Future versions of the 
algorithm could be informed by these data. For example, GPS tagging data 
from migratory bird species could help to describe migration corridors and, 
in some cases, also flight altitude for the assessment of collision risk. 

Since the present version of the algorithm is primarily based on the spatial 
distribution of birds over the non-breeding period of their life cycle, the addi-
tion of abundance and behaviour of breeding and migratory birds is likely to 
improve the use of the tool. For instance, the marine area east of Bornholm 
was identified as having a low risk for birds about offshore wind farms (Fig-
ure 2.5.). The GPS data from breeding birds showed that part of that area was 
utilized by breeding common guillemots (Figure 2.16.) and can potentially al-
ter the result of the risk assessment. The inclusion of empirical data on the 
distributions of breeding and migratory birds will be addressed in upcoming 
versions of the risk-ranking algorithm. 

3.3 Next steps and future developments 
An essential next step is to carry out a statistical sensitivity analysis to address 
how uncertainty in the input parameters affect the outputs of the algorithm, 
both in terms of the three hazard maps and the combined risk map. The ro-
bustness of the algorithm should also be considered in terms of its assump-
tions and structure. A comparison of the risk maps both including and exclud-
ing species SPA designations indicated that, for the present study area and 
modelled species units, the outputs were not unduly influenced by the as-
sumption of complete protection by species in designated SPAs. 

All species units were modelled using the same general framework, but it is 
possible that the distribution maps of some species could be improved by tai-
loring the code.  Additionally, all distance measures used in the spatial maps 
are Euclidean (as the crow flies) and some species may benefit from using 
Geodesic (as the fish swims) distances, under which distances are measured 
around obstacles, such as land, rather than across such obstacles. Inclusion of 
survey data from Swedish Kattegat could improve the framework especially 
for razorbills/common guillemots.  

We envision several improvements and extensions to the spatial risk-ranking 
framework for seabird species (Figure 3.1). For example, breeding bird utili-
zation could be included in the existing impact pathways. Movement 
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corridors could be considered by allowing a migration intensity map to in-
form an additional impact pathway for barrier effects. Future iterations of the 
algorithm could also consider individual species currently combined to spe-
cies units (Table 1.1), provided that reliable estimates can be made of the com-
position of individual species in the combined unit abundance. This approach 
would likely still require assuming the same relative distribution of species 
within each unit but would be able to account for any differences in their total 
abundance, assessment targets and susceptibility to hazards (Table 1.1, Table 
1.2). In a similar approach, to incorporate additional species currently ex-
cluded from the algorithm due to low sample size (Table 1.3), it may be pos-
sible to include ecologically similar species as a proxy. While it is not possible 
to estimate spatial distribution for some species with few detections, an esti-
mate of detectability and abundance may still be possible through the distance 
sampling framework. Multi-species distance-sampling analyses, and joint 
species distribution modelling may also offer feasible avenues to borrow sta-
tistical power and make most of the available data. 

At this stage of development, we have focused on the interpretation of spa-
tially relative risk, i.e., ranking of areas according to relative species risk. We 
do not attempt to interpret the magnitude of relative risk ratio values for each 
species unit due to the paucity of empirical data currently available to inform 
the associated input parameters e.g., on collision rates. However, there is 
scope to reduce uncertainty in the input parameters by informing these with 
further empirical results and collision risk modelling (Figure 3.1), as well as 
cross-validating relative species risks with population-level impact assess-
ments for well-known species. This would allow a greater interpretative 
power and applicability of this approach to future strategic and cumulative 
risk assessments. 

The spatial risk-ranking algorithm could be implemented as an interactive as-
sessment tool, such as a ShinyApp. An interactive tool would allow users to 
modify input parameters for different use-cases and to generate and compare 
different scenarios, e.g., between different seasons, or under different as-
sumptions about species-level impacts.  

  

Figure 3.1. Future directions for 
the spatial risk-ranking approach. 
Future versions of the algorithm 
(grey arrows) could incorporate 
tracking data to inform species 
occurrence that is then input to 
each impact pathway (dark blue 
arrows). The tracking data could 
also be used to inform flight pa-
rameters to inform collision rates. 
We also envision that the target 
protection levels of each species 
should also inform the target pro-
tection levels of their habitat.  
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We foresee substantial scope to adapt and apply the assessment approach to 
different receptor groups than seabirds. Though the specific impact pathways 
vary, the developed algorithm and basic principles, such as target protection 
levels, could be applied to a broad range of species and phases of wind farm 
life cycle, thus providing consistency in assessment approach. For example, 
for marine mammals with seasonal variation in distribution, the algorithm 
could be used to generate seasonal maps to compare potential risks from pile 
driving between summer versus winter. Similar to the multiple hazard maps 
presented here for seabirds, multiple impact pathways could be considered 
for noise impacts on marine mammals, such as auditory injury and avoidance 
or other behaviour response. Indeed, the impact pathways could be user-spec-
ified as part of a comprehensive, interactive assessment tool. 
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6 Appendix 1: Glossary 

Table 6.1.   Glossary of terms   

Term Definition 

Assessment metric An explicit expression of the environmental value to be assessed. Analogous to assessment end-
point: “An explicit expression of the environmental value to be protected, operationally defined as an 
ecological entity and its attributes” (USEPA, 2016). Here, we use three assessment metrics:  
the degree of overlap with core habitat, the expected number of seabirds at risk of displacement, and 
the expected number of birds at risk of collision. 

Assessment outcome The outcome value of assessment metrics following environmental (risk) assessment 
Assessment target The desired, or acceptable, value for each assessment metric, which can be used to benchmark the 

performance of assessment outcomes in achieving targets. Such benchmarking also enables the 
comparison of assessment outcomes of receptors with different targets. We considered the following 
assessment targets: 
Habitat protection level (HPL, ℎ𝑖𝑖∗):  the proportion of each species’ range that should be protected 
from any additional habitat alteration, reflecting the dependence of each species on spatially limited 
resources. HPL was used to benchmark the degree of overlap with core habitat metric. 
Target protection level (TPL, 𝑝𝑝𝑖𝑖∗): the desired level of complete protection for each species unit in 
Danish national waters, given current population status, trends, and resilience to existing threats. 
Specifically, the TPL was defined as the proportion of the current population size in the national wa-
ters that should be protected from any additional habitat loss, mortality, and impaired reproduction, to 
maintain or achieve favourable conservation status. TPL was to benchmark both the displacement 
and collision metrics. 

Hazard The source of risk. “Element which alone or in combination has the intrinsic potential to give rise to 
risk” (ISO 31000). Here, we considered three hazards: habitat overlap, displacement, and collision 
due to wind farm presence. 

Risk In the broadest sense, defined as “The effect of uncertainty on objectives” (ISO 31000). Typically 
used to describe both the likelihood and consequence of unwanted or adverse effects, such as in 
ecological risk assessment (ERA) (Gibbs & Browman, 2015). When the objective of the ERA is to 
protect individuals or populations of animals, risk can be defined as “The probability of harmful effects 
to the health of individuals or to populations integrated over a defined time period” (Tyack et al., 
2022).  

Risk-ranking The ordinal ranking of risk from low to high values. Risk-rankings only contain information about the 
order of values, or the position of an element in an ordered series, not absolute value or magnitude 
differences in risk level. 

Relative risk Risk expressed relative to a chosen benchmark level of risk. While relative risk does not express the 
absolute value of risk, relative risk can be ranked, as well as inform about the magnitude differences 
in risk compared to the benchmark. Here, we quantify relative risk to collision and displacement as 
the ratio between expected number of affected individuals and the acceptable number of affected in-
dividuals (1-TPL). Similarly, to quantify relative risk of habitat overlap, the expected overlap with core 
habitat was benchmarked by the acceptable level of overlap (1-HPL). 

Relative species risk Species risks expressed relative a species benchmark, such as a minimum viable population size. In 
this work, we define relative species risk with respect to assessment targets. Relative species risks 
were calculated for each hazard as relative risk ratios, with the assessment metric as the numerator 
and assessment target in the denominator.   

Spatially relative risk Risk expressed relative in space. Spatially relative risks may be benchmarked relative to a specific 
area, or represent a ranking within the whole area. With the assessment objective being a spatially 
explicit risk-ranking (i.e., a sensitivity map), we chose the ranking approach, and thus the mapped 
risks are relative to the lowest and highest values in Danish marine waters. 

Species unit Individual species or ecologically similar species groups (Table 1.1) that were analysed together as a 
unit in the analysis. Individual species within species groups were assumed to have broadly similar 
distribution and habitat preference, target protection level, displacement rate and collision risk.  



 58 

7 Appendix 2: Spatial analysis details 

7.1 Data collection 
Visual aerial surveys were used to collect data on seabirds using line transect 
distance sampling methods (Buckland et al., 2001). During these surveys, 
trained observers searched for, and recorded birds into distance bands in ad-
dition to environmental conditions at the time (e.g. sea state or sun glare). The 
detections were recorded in four distance bins (A-D) with categories of: 0m -
119m, 119m-388m, 388m-956m and 956m-1456m perpendicular to the survey 
track line (Figure 6.1). No band under the plane was recorded. Not all detec-
tions could be identified to species level, in which case species were identified 
to the nearest taxon (Table 1.1). 

7.2 Data processing 
Each surveyed transect from each survey day and aircraft were given a unique 
identifier Survey transects were divided into 0.5 km segments. Survey effort, 
environmental variables (e.g., water depth) and any species detections were 
associated with the time and coordinate information for each segment. All lat-
itude/longitude locations were converted to UTMs using UTM Zone 32N 
with Datum ETRS. 

Detection of seabirds from aerial surveys can be influenced by sighting con-
ditions, such as sun glare and sea state. Data to describe sighting conditions 
is usually collected in-situ, however in few cases when this is absent, alterna-
tive methods are required to identify (and adjust for) heterogeneity in the de-
tection probability. Accounting for such heterogeneity is particularly im-
portant when using the distance sampling method, where near-perfect detec-
tion at the track line is an often-required assumption. 

 
Figure 6.1.   The transect band definitions for aerial line transect surveys. From the survey altitude of 76 m, there is a dead an-
gle of 44 m on each side of the survey track that the observers could not cover. 
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We used detection information from band A for the left-hand and right-hand 
sides of the aircraft to identify transect lines with likely poor sighting condi-
tions. For all modelled species units except flying Gannet and Kittiwake (Ta-
ble 1.1), which are much easier to see even when glare is present, the identified 
transects had observations from the affected side removed and the coverage 
reduced to one side (i.e. returning a one-sided transect). 

The effects of glare, and any mitigations as a result, was approached using a 
dedicated analysis. The analysis was designed to quantify the extent that di-
rectional sun glare can lead to left/right hand side bias in counts within a 
single transect line with the same direction of travel. Specifically, we assumed 
that the proportion of left or right sightings in band A should be 0.5 and follow 
a Binomial distribution. We compared the proportions for each transect to a 
critical value calculated as the quantile of the Binomial distribution (𝑛𝑛, 𝑝𝑝 = .5) 
at three standard errors greater than the mean and where is equal to the num-
ber of observations on the transect. Three standard errors is a common meas-
ure in extreme value theory (Leys et al., 2013). Any transects whose values 
were greater than the critical value had the observations from the smaller side 
removed and the coverage reduced to a single side. 

7.3 Modelled species and seasons 
The distance and spatial analyses were carried out separately for 17 seabird 
species units, representing either individual species or species groups (Table 
1.1). Ecologically similar bird species that are challenging to identify to species 
level from aircraft were grouped together. The groups included red- and 
black-throated divers (hereafter, divers), red-necked and crested grebe (here-
after, grebes), common- and herring gull (hereafter, grey gulls), common-, arc-
tic-, and sandwich terns (hereafter, terns), and razorbills and common guille-
mots (hereafter, alcids). Hereafter, for brevity, the 17 species and species 
groups (Table 1.1) are referred to as the modelled species units. 

For each modelled species unit we estimated a single density surface, averag-
ing across all survey years and seasons in Danish waters. However, for species 
whose presence in Danish waters is strongly seasonal, due to their migration 
schedule, the spatial analysis excluded survey data from seasons that the spe-
cies unit was considered absent a-priori (Table 1.4). This avoided introducing 
uncertainty to the static density distribution maps that was solely due sea-
sonal variation in presence-absence. For example, divers were considered ab-
sent during summer, and therefore only surveys from autumn, winter, and 
spring were included in the spatial analysis for this species unit.  

7.4 Distance sampling analysis 
Distance sampling analyses were conducted for each species unit by pooling 
the information from each survey. For all species except gannet, band D was 
removed from analysis owing to little or no observations from that distance 
bin. 
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When fitting detection functions, the effects of covariates, other than perpen-
dicular distance, are incorporated into the detection function model directly 
(Multiple Covariate Distance Sampling, MCDS)(Buckland et al., 2001; 
Marques & Buckland, 2004; Marques et al., 2007). In these cases, the probabil-
ity of detection becomes a multivariate function, which represents the proba-
bility of detection at perpendicular distance and covariates. In this study, us-
ing a half-normal detection function 𝑒𝑒−(𝑦𝑦

𝑥𝑥

𝜎𝜎2
) the covariates were incorporated 

via the scale term, 𝜎𝜎, where for sighting 𝑗𝑗, 𝜎𝜎 has the form: 

𝜎𝜎𝑗𝑗 = exp (𝛽𝛽0 + �(𝛽𝛽𝑞𝑞𝑣𝑣𝑗𝑗,𝑞𝑞)
𝑄𝑄

𝑞𝑞=1

) 

 
where 𝛽𝛽0, and 𝛽𝛽𝑞𝑞 (𝑞𝑞 = 1, … ,𝑄𝑄) are parameters to be estimated (Buckland et al., 
2001). Both half-normal and hazard rate detection functions were fitted with 
BIC used to choose between the two models. The candidate variables trialled 
were bird group size, behaviour, observer, and sea state (Table 4). Observers 
that had small sample size (<30 observations in total, or any distance bands 
with no observations) were combined into “Other” category. Sea state, a clas-
sification of wave activity, was recorded in classes of 0.5, and was tested both 
with and without rounding to the nearest integer. Observations with sea 
states greater than four were removed. 

7.5 Modelling framework 
The response variable for the spatial models was bird counts in a small area 
(segment) corrected for detectability. This response variable was modelled us-
ing a Tweedie framework, which includes an estimated dispersion parameter 
(𝜑𝜑) and Poisson-Gamma mixing parameter (𝜉𝜉) to return an appropriate mean-
variance relationship. The mixing parameter takes values from 1 (equivalent 
to quasi-Poisson) and 2 (equivalent to Gamma). If the estimated parameter 
was close to one, the models were considered quasi-Poisson.  

Model selection included a set of one-dimensional models with a single can-
didate covariate each (water depth, distance to coast). Additionally, to ac-
count for more realistic (and localised) surface patterns, which could be 
caused by unmodelled environmental variability, a spatial surface was also 
fitted to each model. Specifically, a two-dimensional CReSS-based surface us-
ing a Gaussian radial basis function was included in the model (Scott-Hay-
ward et al., 2014). 

As an illustration, the following equation represents an example of a Tweedie 
model with log link function, fitted with a one-dimensional smooth term (e.g., 
bathymetry) alongside a two-dimensional spatial smooth: 

𝑦𝑦𝑖𝑖 ,𝑗𝑗 ~ 𝑇𝑇𝑇𝑇(𝜇𝜇𝑖𝑖,𝑗𝑗,𝜑𝜑,𝜉𝜉) 

𝜇𝜇𝑖𝑖,𝑗𝑗 =  𝑒𝑒𝛽𝛽0+𝑠𝑠1�𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖,𝑗𝑗�+𝑠𝑠2�𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑖𝑖,𝑗𝑗, 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖,𝑗𝑗� 
 
where 𝑦𝑦𝑖𝑖,𝑗𝑗 is the estimated count for transect 𝑖𝑖 segment 𝑗𝑗 and 𝑠𝑠1 represents 
either a quadratic -spline or natural cubic spline smooth of depth. Here, 𝑠𝑠2 is 
a two dimensional smooth of space (with coordinates 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑖𝑖,𝑗𝑗 and  𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑖𝑖,𝑗𝑗 in 
UTMs). Implicit in this model are also coefficients for the intercept (𝛽𝛽0) and 
any spline-based coefficients associated with the smooth terms. The effort as-
sociated with each observation varied depending on the associated segment 
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length and width. Segment area was therefore included as a log-scale offset 
term in the model. 

A globally applicable depth or distance to coast term and a more flexible spa-
tial term were trialled for inclusion in each model, to indicate how spatial pat-
terns should be modelled in each case. In other words, this quantifies if any 
spatial patterns are sufficiently described by the one-dimensional covariates 
(which applies the same across the surface) or if a more considered approach 
to spatial patterns was required for each species. For example, if the model 
selection procedure resulted in the inclusion of depth and the exclusion of a 
two-dimensional spatial element, then this signals that any spatial patterns 
are primarily a function of the depth, regardless of the geographical location 
of this depth in the survey area. 

If the two-dimensional spatial term was selected for inclusion in a model, then 
the spatial density patterns, over and above any environment-related terms, 
were accommodated using a spatially adaptive term. This permitted different 
amounts of flexibility across the surface in a targeted, yet parsimonious, way. 
In other words, relatively complex spatial patterns could be accommodated 
with very few parameters. 

Selection between competing models was undertaken using a 5-fold cross val-
idation metric, whilst preserving any within-transect correlation via the ap-
propriate blocking structures. 

7.6 Model specification, selection and fitting 
CReSS-SALSA based spatially adaptive generalized additive models, with 
targeted flexibility, were fitted to data from each survey to allow for non-lin-
ear relationships between the one-dimensional and two-dimensional covari-
ates and the response (Walker et al., 2011; Scott-Hayward et al., 2014, 2023). 

All covariates were permitted to have a linear or nonlinear relationship with 
the response, and when a smooth term was included in a model, it was spec-
ified to be either a quadratic (degree 2) B-spline (df=3,4,5) or a natural cubic 
spline (df=2,3,4). In cases where these degrees of freedom boundaries were 
reached however, a broader range of parameters were trialled instead. The 
degrees of freedom for these terms determine the flexibility of these smooth 
relationships - the more degrees of freedom, the more flexible, and the more 
non-linear, the relationship can be. 

The location of this flexibility (along the x-axis) in these terms (e.g., depth) 
was also determined as part of the model selection process. This permitted the 
relationship in some areas of the covariate range to be relatively complex (e.g., 
in shallow waters) and the relationship in other areas (e.g., in deep waters) to 
be relatively simple. In both smooth types, a maximum of three internal knots 
was permitted along with the spline-specific number of boundary knots. The 
number and location of knots was determined by an objective fit criterion. 
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The spatial patterns in each analysis were based on a two-dimensional spatial 
term, which varied in complexity. The flexibility of the spatial element consti-
tuted part of the model selection procedure and for each survey was deter-
mined using a Spatially Adaptive Local Smoothing Algorithm (SALSA). 
While this model selection element technically occurred between limits 
(df=[2,100]), in practice, the flexibility chosen in each case was not bounded 
by those values, since the selection procedure occurred well within the 
bounds of the specified range. 

The MRSea R package, designed to fit both CReSS and SALSA type models, 
was used for model fitting and a 5-fold cross-validation (CV) procedure was 
used to govern all model selection elements (Scott-Hayward et al., 2023; R 
Core Team, 2024). The CV procedure attempts to balance the fit to data unseen 
by the model while minimising the number of parameters, and was used to 
both select terms and the extent of their flexibility in each model. Note, this 
cross validation was predicated on preserving correlated blocks of survey 
data (transect lines) so that any residual autocorrelation present was not dis-
rupted when choosing folds. This was considered necessary to ensure inde-
pendent sampling units under the scheme. 

The response data were collected along survey lines in sequence, and so con-
secutive observations were likely to be correlated in space and time. In other 
words, points closer together in space and/or time were likely to be more 
similar than points that were distant in time and/or space. The covariates in-
cluded in the model were unlikely to explain these patterns in full, and so 
some element of these patterns likely remain in model residuals. Such pat-
terns are a violation of residual independence, which underpin traditional 
model approaches such as Generalized Additive Models. Therefore, robust 
standard errors were used as part of the MRSea modelling framework to ac-
count for residual autocorrelation. 

Uncertainty about model parameter estimates proceeded via robust standard 
errors due to the nature of the survey procedure. These essentially work by 
inflating the standard errors in relation to the positive correlation observed 
within pre-specified blocks of residuals. In cases, where this residual correla-
tion is minimal, the adjustments are small, and when the correlation is more 
extreme, the inflation is larger. 

A transect-based blocking structure was used to reflect potential correlation 
within blocks while independence (i.e., no correlation) between blocks was 
assumed. To ensure this assumption was realistic, the decay of any residual 
correlation to zero (i.e., independence) with the distance between points 
(within blocks along transects) was assessed visually. Specifically, transects in 
each survey were used as the blocking structure and an Auto Correlation 
Function (ACF) plot on this basis was used to check the suitability of this 
blocking structure, via a ‘decay to zero’ trend within blocks. 

7.7 Model diagnostics 
To assess the adequacy of model fit in each case, a range of diagnostic 
measures were used. 

The assumed mean-variance relationship under the model was assessed vis-
ually using plots of the fitted values from the model against the variance of 
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the residuals. In this analysis, Tweedie models were employed which assume 
a nonlinear mean-variance relationship:  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦) = 𝑉𝑉(𝜇𝜇)𝜙𝜙 =  𝜇𝜇𝜉𝜉𝜙𝜙 
 
where 𝜙𝜙 is the dispersion parameter. The dispersion parameter was estimated 
for each model and this estimate was used in the visual assessment of this 
mean-variance relationship assumed to hold under the model. The power pa-
rameter was estimated prior to model fitting using a maximum likelihood 
profile approach. Based on the nature of the response data, values of were 
permitted between 1 (Quasi-Poisson) and 2 (Gamma). 

QQ plots and residuals against predicted values plots were assessed to ascer-
tain the level of agreement between the data and the model. These plots were 
created using the DHARMa R package and using simulated residuals. Re-
garding interpretation, the left panel is a uniform QQ plot, and the right panel 
shows residuals against predicted values, with outliers highlighted in red. 
Given these outputs, we would expect that a correctly specified model shows: 

a) straight 1-1 line, as well as no compelling evidence against the null 
hypothesis of a correct overall residual distribution, as indicated by 
the p-values for the associated tests in the QQ-plot. 

b) visual homogeneity of residuals in both the vertical and horizontal 
directions, in the residuals against predictor plot. 

Pearson residuals for each model were also visualised spatially to ensure there 
were no areas of consistent bias across the survey area. This would be indi-
cated by clusters of negative or positive residuals in spatially similar locations. 

Residual independence was not assumed to hold under the model and instead 
model inference proceeded under robust standard errors. As described, Auto 
Correlation Function (ACF) plots were instead used to check the suitability of 
this blocking structure, via a ‘decay to zero’ trend within blocks. 
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8 Appendix 3: Spatial outputs, diagnostics 
and risk-mapping by species unit 

8.1 Razorbill/ common guillemot. Species unit “Alcid” 

8.1.1 Aerial survey dataset 

 

8.1.2 Spatial model outputs 

 
Figure 8.1.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species unit, 
pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, split 
across the seasons. 

Figure 8.2.    Maps showing pre-
dicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 
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8.1.3 Diagnostics for the spatial model 

 

8.1.4 Risk-mapping 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

s(depth, df=3) s(x,y, df=12) 16 36.1 36.3 

 
Figure 8.3.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation func-
tion, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.4.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.2 Red-throated diver/ black-throated diver. Species unit 
“Diver” 

8.2.1 Aerial survey dataset 

8.2.2 Spatial model outputs 

 

 
Figure 8.5.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species unit, 
pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, split 
across the seasons. 

Figure 8.6.    Maps showing pre-
dicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 
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8.2.3 Diagnostics for the spatial model 

 

8.2.4 Risk-mapping 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

depth, df=1 s(x,y, df=17) 19 28.9 3.4 

 
Figure 8.7.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation func-
tion, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.8.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.3 Common eider. Species unit “Eider” 

8.3.1 Aerial survey dataset 

8.3.2 Spatial model outputs 

8.3.3 Diagnostics for the spatial model 

 
Figure 8.9.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species unit, 
pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, split 
across the seasons. 

Figure 8.10.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

s(distcoast, df=2) s(x,y, df=12) 15 305.4 1814.5 
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8.3.4 Risk-mapping 

 
Figure 8.11.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.12.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.4 Northern fulmar. Species unit “Fulmar” 

8.4.1 Aerial survey dataset 

8.4.2 Spatial model outputs 

8.4.3 Diagnostics for the spatial model 

 
Figure 8.13.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.14.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

s(distcoast, df=3) s(x,y, df=14) 18 48.2 6.3 
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8.4.4 Risk-mapping 

 

 
Figure 8.15.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.16.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.5 Northern gannet. Species unit “Gannet” 

8.5.1 Aerial survey dataset 

8.5.2 Spatial model outputs 

8.5.3 Diagnostics for the spatial model 

 

 
Figure 8.17.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.18.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

NA s(x,y, df=15) 16 42.1 1.5 
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8.5.4 Risk-mapping 

 

 
Figure 8.19.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 
 

 
Figure 8.20.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.6 Great black-backed gull. Species unit “GBBG” 

8.6.1 Aerial survey dataset 

8.6.2 Spatial model outputs 

8.6.3 Diagnostics for the spatial model 

 

 
Figure 8.21.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.22.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

distcoast, df=1 s(x,y, df=11) 13 130.2 18.5 
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8.6.4 Risk-mapping 

 
Figure 8.23.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.24.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.7 Common Goldeneye. Species unit “Goldeneye” 

8.7.1 Aerial survey dataset 

8.7.2 Spatial model outputs 

8.7.3 Diagnostics for the spatial model 

 

 
Figure 8.25.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.26.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

depth, df=1 NA 2 260.1 22 
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Risk-mapping 

 
Figure 8.27.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.28.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.8 Crested grebe/ red-necked grebe. Species unit “Grebe” 

8.8.1 Aerial survey dataset 

8.8.2 Spatial model outputs 

8.8.3 Diagnostics for the spatial model 

 

 
Figure 8.29.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.30.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

NA s(x,y, df=13) 14 159.1 6.9 
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8.8.4 Risk-mapping 

 
Figure 8.31.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.32.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.9 Herring gull/ common gull. Species unit “Gull” 

8.9.1 Aerial survey dataset 

8.9.2 Spatial model outputs 

8.9.3 Diagnostics for the spatial model 

 

 
Figure 8.33.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.34.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

s(distcoast, df=4) s(x,y, df=20) 25 205.3 239.1 
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8.9.4 Risk-mapping 

 
Figure 8.35.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation ob-served in each transect and the red line the average of 
these values across transects. Sec-ond panel: the estimated Tweedie mean-variance relationship (red line) against observed 
values (black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and 
residuals against predicted values. The red stars are out-liers and the red line is a smooth spline around the mean of the residu-
als. 

 
Figure 8.36.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.10 Black-legged kittiwake. Species unit “Kittiwake” 

8.10.1 Aerial survey dataset 

8.10.2 Spatial model outputs 

8.10.3 Diagnostics for the spatial model 

 

 
Figure 8.37.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.38.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

NA s(x,y, df=11) 12 37.3 1.9 
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Risk-mapping 

 
Figure 8.39.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.40.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.11 Lesser black-backed gull. Species unit “LBBG” 

8.11.1 Aerial survey dataset 

8.11.2 Spatial model outputs 

8.11.3 Diagnostics for the spatial model 

 

 
Figure 8.41.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.42.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

NA s(x,y, df=15) 16 59.5 0.3 
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8.11.4 Risk-mapping 

 
Figure 8.43.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.44.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.12 Little gull. Species unit “Littlegull” 

8.12.1 Aerial survey dataset 

8.12.2 Spatial model outputs 

8.12.3 Diagnostics for the spatial model 

 

 
Figure 8.45.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.46.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

s(distcoast, df=2) s(x,y, df=11) 14 101.8 0.6 
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8.12.4 Risk-mapping 

 
Figure 8.47.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.48.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.13 Long-tailed duck. Species unit “Longtailed” 

8.13.1 Aerial survey dataset 

8.13.2 Spatial model outputs 

8.13.3 Diagnostics for the spatial model 

 

 
Figure 8.49.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.50.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

s(distcoast, df=2) s(x,y, df=2) 4 171.9 92.9 
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8.13.4 Risk-mapping 

 
Figure 8.51.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.52.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.14 Red-breasted merganser. Species unit “Merganser” 

8.14.1 Aerial survey dataset 

8.14.2 Spatial model outputs 

8.14.3 Diagnostics for the spatial model 

 

 
Figure 8.53.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.54.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

NA s(x,y, df=9) 10 64.1 15 
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8.14.4 Risk-mapping 

 
Figure 8.55.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.56.   Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines.  
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8.15 Common scoter. Species unit “Scoter” 

8.15.1 Aerial survey dataset 

8.15.2 Spatial model outputs 

8.15.3 Diagnostics for the spatial model 

 

 
Figure 8.57.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.58.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

NA s(x,y, df=7) 8 5555.6 127899.2 
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8.15.4 Risk-mapping 

 
Figure 8.59.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.60.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 



 94 

8.16 Common tern/ arctic tern/ sandwich tern. Species unit 
“Tern” 

8.16.1 Aerial survey dataset 

8.16.2 Spatial model outputs 

8.16.3 Diagnostics for the spatial model 

 
Figure 8.61.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.62.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

s(depth, df=2) s(x,y, df=12) 15 91.3 3.4 
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8.16.4 Risk-mapping 

 
Figure 8.63.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.64.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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8.17 Velvet scoter. Species unit “Velvetscoter” 

8.17.1 Aerial survey dataset 

8.17.2 Spatial model outputs 

8.17.3 Diagnostics for the spatial model 

 

 
Figure 8.65.    Maps showing observed counts (red) and effort segments (pink). Left panel: analyzed dataset for the species 
unit, pooled across those seasons the species unit was considered present (Table 1.4). Right panel: all data for the species unit, 
split across the seasons. 

Figure 8.66.    Maps showing 
predicted counts (top) and boot-
strapped uncertainty (bottom), 
overlaid with data. Data are 
shown as average counts in a 
grid of 20-km-wide hexagons. 

 

Var. 1D Var. 2D # Pars. Dispersion par. CV score 

depth, df=1 s(x,y, df=10) 12 91.7 15.6 
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8.17.4 Risk-mapping 

 
Figure 8.67.    Figure showing diagnostics for the selected best spatial model. Left-most panel: within-block autocorrelation 
function, with the grey lines representing the residual correlation observed in each transect and the red line the average of these 
values across transects. Second panel: the estimated Tweedie mean-variance relationship (red line) against observed values 
(black symbols), with grey dashed line showing 1:1 relationship for reference. Third and right-most panel: QQplot and residuals 
against predicted values. The red stars are outliers and the red line is a smooth spline around the mean of the residuals. 

 
Figure 8.68.    Figure showing the rescaling of estimated density distribution to habitat risk for the species unit. Bottom left and 
right: species unit abundance and top-use areas as cumulative percentiles (up to 0.95 abundance, defining species unit range). 
Red polygons: SPAs designated for one or more species in the species unit. Purple polygons: low-risk areas identified in Figure 
2.5. Blue symbols: existing wind turbines. 
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9 Appendix 4: Overview of data input. 

The access to data from aerial Distance Sampling line transect surveys for this 
risk assessment analysis was almost entirely built on survey data from Aarhus 
University. The data was a combination of surveys conducted in relation to 
the establishment of offshore wind farms in Denmark, supplied with data 
from the Danish national monitoring program (NOVANA) for migratory 
birds. 

In the below Table 9.1 an overview of the data sets used for this analysis is 
presented. Data sets that are available, but has not been included in this anal-
ysis, is also listed below.  

Table 9.1.   Data summary for bird data, along with status for each dataset. Data status: Included: Data that has been included 
in the analysis;  Excluded: Data that has been professionally assessed as not useful, e.g., due to age or collection method; Una-
vailable: Data that could not be obtained, e.g. because they have not been stored or not ready within the timeframe of the pro-
ject; Unauthorized: Data for which permission to use could not be obtained. Data owner abbreviations: MST = Miljøstyrelsen, 
the Danish Environmental Protection Agency, ENS = Energistyrelsen, the Danish Energy Agency. 

Data  
description 

Project 
Time  
period 

Geographical  
area 

Number  
of survey days 

Transect 
Length 

(Km) 
Data owner Data Status* 

Aerial line  Habitats  2019 East  1 608 MST Included 
transect survey directive   Bornholm     
  related        
Aerial line  Habitats  2022 East of  2 1168 MST Included 
transect survey directive   Bornholm     
  related        
Aerial line  HornsRev OWF 2000 Horns Rev 7 5055 Various Included 
transect survey        
Aerial line  HornsRev OWF 2001 Horns Rev 5 3988 Various Included 
transect survey        
Aerial line  HornsRev OWF 2002 Horns Rev 4 2780 Various Included 
transect survey        
Aerial line  HornsRev OWF 2003 Horns Rev 6 4583 Various Included 
transect survey        
Aerial line  HornsRev OWF 2004 Horns Rev 4 3398 Various Included 
transect survey        
Aerial line  HornsRev OWF 2005 Horns Rev 7 4696 Various Included 
transect survey        
Aerial line  HornsRev OWF 2006 Horns Rev 5 4244 Various Included 
transect survey        
Aerial line  HornsRev OWF 2007 Horns Rev 4 2891 Various Included 
transect survey        
Aerial line  HornsRev OWF 2011 Horns Rev 5 3150 Various Included 
transect survey        
Aerial line  HornsRev OWF 2012 Horns Rev 5 3158 Various Included 
transect survey        
Aerial line  HornsRev OWF 2023 Horns Rev 2 1131 Various Included 
transect survey        
Aerial line  HornsRev OWF 2024 Horns Rev 4 2364 Various Included 
transect survey        
Aerial line  OWF-related 2012 Jammer- 4 2767 Vattenfall Included 
transect survey   bugten     
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Aerial line  OWF-related 2013 Jammer- 1 765 Vattenfall Included 
transect survey   bugten     

Aerial line  NOVANA 2008 
Inner Danish 
waters 2008 

13 6761 MST Included 

transect survey        

Aerial line  NOVANA 2013 
Inner Danish 
waters 2013 

15 8453 MST Included 

transect survey        

Aerial line  NOVANA 2016 
Inner Danish 
waters 2016 

14 7082 MST Included 

transect survey        

Aerial line  NOVANA 2019 
Inner Danish 
waters 2020 

2 1020 MST Included 

transect survey        

Aerial line  NOVANA 2020 
Inner Danish 
waters 2020 

12 6844 MST Included 

transect survey        

Aerial line  NOVANA 2023 
Inner Danish 
waters 2023 

13 8150 MST Included 

transect survey        

Aerial line  
Energinet, 
North Sea I 

2023 
North Sea I sur-

vey area 
10 6236 Energinet Included 

transect survey        

Aerial line  NOVANA 2024 
North Sea I sur-

vey area 
6 3711 Energinet Included 

transect survey        

Aerial line  
Habitat Direc-

tive related 
2019 Entire Danish  5 3982 MST Included 

transect survey   North Sea 2019     

Aerial line  
Habitat Direc-

tive related 
2009 Eastern Danish  1 1062 MST Included 

transect survey   North Sea     

Aerial line  
Habitat Direc-

tive related 
2016 Eastern Danish   4 2269 MST Included 

transect survey   North Sea     

Aerial line  
Habitat Direc-

tive related 
2017 Eastern Danish  3 2342 MST Included 

transect survey   North Sea     

Aerial line  
Energinet, 
North Sea  

2022 
North Sea En-

ergy  
6 3581 Energinet Included 

transect survey Energy Island  
Island survey 

area 
    

Aerial line  
Energinet, 
North Sea  

2023 
North Sea En-

ergy  
6 3563 Energinet Included 

transect survey Energy Island  
Island survey 

area 
    

Aerial line  
North Sea 

South project 
2003 Southern Danish  3 2557 MST Included 

transect survey   North Sea     

Aerial line  
North Sea 

South project 
2004 Southern Danish  1 819 MST Included 

transect survey   North Sea      

Aerial line  
North Sea 

South project 
2007 Southern Danish 1 872 MST Included 

transect survey   North Sea     
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Aerial line  
North Sea 

South project 
2008 Southern Danish 1 878 MST Included 

transect survey   North Sea      
Aerial line  OWF-related 2019 Øresund/ 2 1246 HOFOR Included 
transect survey   Køge Bugt     
Aerial line  OWF-related 2020 Øresund/ 6 3769 HOFOR Included 
transect survey   Køge Bugt     

Aerial line  
Rødsand/Ny-

sted  
1999 

Rødsand/Nysted 
OWF Survey 

area 
3 1730 Various Included 

transect survey OWF related       

Aerial line  
Rødsand/Ny-

sted  
2000 

Rødsand/Nysted 
OWF Survey 

area 
7 3713 

Various 
Included 

transect survey        

Aerial line  OWF related 2001 
Rødsand/Nysted 

OWF Survey 
area 

7 3704 
Various 

Included 

transect survey        

Aerial line  
Rødsand/Ny-

sted  
2002 

Rødsand/Nysted 
OWF Survey 

area 
4 2324 

Various 
Included 

transect survey        

Aerial line  OWF related 2003 
Rødsand/Nysted 

OWF Survey 
area 

4 2203 
Various 

Included 

transect survey        

Aerial line  
Rødsand/Ny-

sted  
2004 

Rødsand/Nysted 
OWF Survey 

area 
4 2330 

Various 
Included 

transect survey        

Aerial line  OWF related 2005 
Rødsand/Nysted 

OWF Survey 
area 

5 2908 
Various 

Included 

transect survey        

Aerial line  
Rødsand/Ny-

sted  
2007 

Rødsand/Nysted 
OWF Survey 

area 
3 1749 

Various 
Included 

transect survey        

Aerial line  OWF related 2011 
Rødsand/Nysted 

OWF Survey 
area 

5 2915 
Various 

Included 

transect survey        

Aerial line  
Thor OWF-rela-

ted 
2019 

Thor OWF sur-
vey area 

8 4659 ENS Included 

transect survey        
Aerial line  NOVANA 2022 Aalborg Bugt 2 1374 MST Included 
transect survey        
Aerial line   
transect survey 

NOVANA 2006 
Inner Danish 

waters 
   Unavailable 

Aerial line   
transect survey 

NOVANA 2012 
Inner Danish 

waters 
   Unavailable 

Aerial line   
transect survey 

NOVANA 2018 
Inner Danish 

waters 
   Unavailable 



 101 

 

Aerial line   
transect survey 

OWF-related  
Smålandsfar-
vand/ Omø 
Staalgrunde 

  
European 

Energy 
Unavailable 

  Aerial line   
transect survey 

OWF-related  
Jammerland 

Bugt 
  

European 
Energy 

Unauthorized 

  Aerial line   
transect survey 

OWF-related  Anholt OWF   Ørsted Unavailable 

  Aerial line   
transect survey 

Femern Baelt 
Project 

 Femern Bælt   
Sund og Bælt 

A/S 
Unavailable 

  Aerial line   
transect survey 

Bornholm 
Energy Island 

 Rønne Banke   Energinet Unavailable 

Aerial line   
transect survey 

Kriegers Flak 
OWF-related 

 Kriegers Flak   Energinet Unavailable 

Aerial line   
transect survey 

Kattegat OWF-
related 

 Central Kattegat   Energinet Unavailable 



MAPPING RELATIVE RISK TO SEABIRDS 
FROM OFFSHORE WIND ENERGY DEVEL-
OPMENTS IN DANISH WATERS

To identify the most suitable areas for development of offshore 
wind energy in Danish marine areas, the Danish Energy 
Agency, in 2022, initiated a project to support the long-term 
planning of future offshore wind farms in Denmark. This report 
evaluates the relative risks to seabirds posed by offshore wind 
energy developments in Danish waters, focusing on habitat 
alteration, displacement, and collision risks.
Using a spatial risk-ranking algorithm, this report aims to 
identify the highest- versus lowest-sensitivity areas based on 
seabird distributions and abundances derived from aerial 
surveys conducted between 2000 and 2024. The algorithm 
combines species density distribution estimates with species-
specific assessment targets and susceptibility to risks (habitat 
alteration, collision, displacement), producing maps highlight-
ing zones where future offshore wind development could 
have relatively high impacts. Data on bird distributions and 
abundances were collected using the Distance Sampling line 
transect method (Buckland et al., 2001), comprising 243 aerial 
surveys conducted over 203 different days and covering more 
than 150,000 km of transects and more than 230,000 species 
detections. These surveys focused on capturing distributions of 
non-breeding birds. An overview of the data set is provided in 
Appendix 4.
Coastal and shallow areas showed the highest sensitivity in 
terms of potential habitat alteration and displacement risk in 
case of future wind energy development. These areas had 
high concentrations of divers, grebes and seaducks, and con-
tained core habitats that wind farm structures and associated 
activities may disrupt. Seabirds susceptible to displacement, 
such as divers and some species of sea ducks, were particular-
ly at risk, as these species tended to avoid areas around wind 
farms. These findings underscore the importance of protecting 
coastal and shallow areas with high seabird density, especial-
ly those designated as Special Protection Areas (SPAs).
Furthermore, offshore areas were identified as having higher 
relative collision risk, especially for species such as kittiwakes 
and other gull species, which are more prone to flying at 
heights within turbine blade sweep areas. The mapping iden-
tified particular offshore regions as high-risk zones for these 
species.
Additional data can provide extra information for the risk map-
ping exercise.  For example, the current version of this work 
uses previously published expert assessment of collision risk for 
each species. However, GPS tracking data from birds can pro-
vide empirical information on migration routes and foraging 
activity. Such data from key species of colonial breeding birds 
during the 2023-2024 breeding seasons highlighted additional 
areas that could be at risk by illustrating marine area use pat-
terns for sensitive species.
In conclusion, this relativistic risk assessment framework, 
grounded in quantitative assessment targets and species-spe-
cific susceptibility to risks, provides a decision-making tool for 
future wind farm planning to minimise ecological impacts on 
Denmark’s seabird populations. Recommendations empha-
sise continued data collection and refinement of species-spe-
cific input parameters to enhance reliability of the algorithm, 
ultimately supporting a balanced approach to wind energy 
expansion and seabird conservation in Danish waters.
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