A proxy for nitrogen concentrations in Danish streams around year 1900

Brian Kronvang, Mette Vodder Carstensen, Søren E. Larsen, Henrik Tornbjerg, Gitte Blicher-Mathiesen, Jens Bøgestrand, Hans Thodsen og Jørgen Windolf
Setting the scene

In Denmark we are lacking data from measurements of nitrogen concentrations in Danish streams for the period around year 1900.

Howden et al., 2010
Trends in monthly nitrate concentration in river Thames upstream London – a catchment with chalk geology and long residence times in groundwater for most waterborne nitrate

Real Reference concentration in River Thames?

Figure 1. Time series plot of monthly nitrate concentration (mg NO₃-N/l), with an approximate 1-year moving average (Watson, 1966)
Establishing a Danish Expert Judgement – N concentrations in streams around year 1900

- DCE, AU made a brief review of the relevant existing international literature in autumn 2014 as a way to reach a qualified expert judgement on a proxy for the nitrogen concentrations in Danish streams around year 1900 (Bøgestrand et al., 2014).

- The expert judgement must also consider the changes occurring in climate (precipitation, temperature), agricultural surplus and agricultural practices.

- A model exercise on DK data could not be conducted at the time – but it was suggested in the report as a way forward to achieve a higher confidence on the expert judgement.
Nitrogen concentrations in streams – international data - historical and modelled as compared to background concentrations measured in 19 Danish streams draining small relatively ‘undisturbed’ catchment in 2011

Figure 1. Koncentrationer af nitrat og total kvælde N-ønskeværdier er målt i upavirkede vandløber fra litteraturen (historisk) (Hirt et al., 2013), modellerede koncentrationer i vandløber fra den tyske MONERIS model (Modelleret) (Hirt et al., 2013), samt DCE’s nyligt beregnede baggrundskoncentrationer fra målinger i upavirkede danske vandløber i 2011 (DCE) (Bøgestrand et al., 2014). Box-whiskers representerer median, 25/75-percentiler og max/min-værdier.
Nitrate concentrations in world rivers around year 1900 – screened for not being downstream major cities

<table>
<thead>
<tr>
<th>Location</th>
<th>n</th>
<th>Median (min-max) (period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinen+tributaries</td>
<td>4</td>
<td>2.1 (1.4-2.9) (ca. 1880)</td>
</tr>
<tr>
<td>Elben+tributaries</td>
<td>4</td>
<td>0.5 (0.2-1.4) (ca. 1890)</td>
</tr>
<tr>
<td>Danube+tributaries</td>
<td>7</td>
<td>0.3 (0.2-0.5) (ca. 1880)</td>
</tr>
<tr>
<td>Rhone+tributaries</td>
<td>2</td>
<td>0.6 (0.5-0.6) (1850-1880)</td>
</tr>
<tr>
<td>Mississippi+tributaries</td>
<td>5</td>
<td>1.8 (0.7-2.8) (1906-07)</td>
</tr>
<tr>
<td>Tributaries to Ohio River</td>
<td>1</td>
<td>1.2 (1906-07)</td>
</tr>
<tr>
<td>Tributaries to St. Lawrence</td>
<td>1</td>
<td>1.9 (1906-07)</td>
</tr>
<tr>
<td>Arkansas river and other rivers</td>
<td>1</td>
<td>0.4 (1906/07)</td>
</tr>
<tr>
<td>Rivers of California</td>
<td>4</td>
<td>0.9 (0.6-1.8) (1906-08)</td>
</tr>
<tr>
<td>Columbia+tributaries</td>
<td>3</td>
<td>0.6 (0.6-1.1) (1911-12)</td>
</tr>
<tr>
<td>Rivers near Oregon and Washington</td>
<td>3</td>
<td>0.3 (0.3-0.6) (1910-11)</td>
</tr>
<tr>
<td>Missisouri river+tributaries</td>
<td>3</td>
<td>2.3 (1.8-2.9) (1906-07)</td>
</tr>
<tr>
<td>Sweden</td>
<td>2</td>
<td>0.17 (0.1-0.5) (1905)</td>
</tr>
</tbody>
</table>

*We assume that Nitrate is regarded as Nitrate-N. However, this information is not stated clearly in the article – so some could be shown as nitrate – more inspections is needed for clarifying this.
Total N in the 19 streams screened where agriculture occupies < 10% of the catchment (Average N input/surplus in catchments = ca. 15 kg N/ha)
The suggested proxy for Total N and Nitrate N concentrations in small streams

The model estimated N concentrations in Danish streams (NO3-N and Total N) around year 1900 (from Bøgestrand et al., 2014)

A spatial variation that to some extent also depict the variation found today in the monitoring data from NOVANA - maybe minus the chalk dominated regions
Nitrogen input to agricultural land in Denmark (from Kyllingsbæk, 2005)
N-surplus in year 1900 is approx. 20 kg N/ha catchment area

Figur 1. Tilsætning af kvælstof i alt og fra forskellige kilder
Nitrate in oxic groundwater in relation to nitrogen input in agriculture in Denmark (Hansen & Larsen, 2016)
Measured N in streams in chalk catchment vs. N surplus in Danish agriculture

(source: Wiggers-Nielsen)

Delay in N response ... oxidized deep groundwater
A low starting concentration in Kastbjerg stream that has been derived from leaching in the 1950’ies
Total N concentration in streams draining 44 smaller agricultural catchments (> 60% farmed) against N surplus in agriculture 1990-2014

\[y = 0.0212x - 0.0046 \]

\[R^2 = 0.8024 \]

Nitrogen surplus in Danish agriculture (x 1000 tonnes N)

Total N concentration in streams draining smaller agricultural catchments (mg N/L)
Conclusions

The expert judgement from 2014 about nitrogen concentrations in Danish streams around year 1900 has not in general been outdated based on our recent findings about:

- Literature review
- Historical nitrogen concentration data from streams and in oxic groundwater
- Analysis of historical N retention in the landscape around year 1900 (later to be presented by Hans Thodsen)
- Historical development in hydrology (later to be presented by Jane R. Poulsen)
- A problematic region is, however, catchments around Mariager Fjord and parts of Limfjorden where the low nitrate removal in the chalk like in the River Thames historically might have given rise to higher nitrate concentrations around year 1900.
River Thames nitrate concentrations if transferred to a typical Danish landscape with high N removal in groundwater

Assumed nitrate concentration with the 'normal' N retention in Danish groundwater and surface waters

Figure 1. Time series plot of monthly nitrate concentration (mg NO₃-N/l), with an approximate 1-year moving average (Watson, 1966)