Sustainable Pig Production in Denmark

By Chief Advisor Per Tybirk

Productivity, Danish Pig Production, 1992-2012

• Protein in feed and N in manure, 1992-2012

- Potential free amino acids
- Ammonia emission driven by feed
- Phosphorus in feed and P in manure, 1992-2012

 Phytase

Ammonia emission

- BAT standards
- Technical solutions

Conclusion

Productivity

Sows	1992	2002	2012
Weaned Piglet/sow/year	21	24	29
Feed unit/sow/year	1300	1400	1540
Weaning weight, kg	7.5	7.2	7.2

Productivity

Sows	1992	2002	2012
Weaned Piglet/sow/year	21	24	29
Feed unit/sow/year	1300	1400	1540
Weaning weight, kg	7.5	7.2	7.2

Weaners 7.2-30 kg	1992	2002	2012
Daily, gain, g	420	420	450
Feed units / kg gain	2.10	2.05	1.95

Productivity

Sows	1992	2002	2012	Ka feed
Weaned Piglet/sow/year	21	24	29	2012
Feed unit/sow/year	1300	1400	1540	1465
Weaning weight, kg	7.5	7.2	7.2	

Weaners 7.2-30 kg	1992	2002	2012	Ka food
Daily, gain, g	420	420	450	2012
Feed units / kg gain	2.10	2.05	1.95	1.75

Growing/finishing pigs	1992	2002	2012	
Slaughter at live weight	98	98	107	Ka feed
Daily gain, 30-100 kg	700	825	890	2012
Feed units/kg gain, Corr. to 30-100 kg	2.98	2.87	2.79	2.63

Productivity, variation 2011

Sows,	Low 25%	50%	25% best
Weaned Piglet/sow/year	25,9	29,0	31,5
Feed unit/sow/year	1559	1535	1527
Weaning weight, kg	7.5	7.1	6.9

Weaners 7.2-30 kg	Low 25%	50%	25% best
Daily, gain, g	390	435	485
Feed units / kg gain	2.12	1.93	1.79

Growing/finishing pigs	Low 25%	50%	25% best
Daily gain, 30-100 kg	801	894	971
Feed units/kg gain, Corr. to 30-100 kg	2.99	2.77	2.63

Less feed per kg pig

- Weaners some potential
- Sows big potential but welfare concern
 - More piglets, less/same feed
- Slaughter pigs : big potential
 - Average 2.77 FU/kg gain, 30-100 kg
 - Best 25%, 2.63
 - Breeding stock: 2.2-2.4
 - Management and health is the problem
 - Requirement for protein and phosphorus increases if feed pr kg gain improves

Crude protein in feed

Lower protein level

- 1. Free amino acids becoming cheaper 1992-2000
- 2. Growth promotor ban in Denmark, 1998/2000
 - Low protein = less diarrhea
- 3. New energy evaluation system 2004
 - Lower energy value of protein 2004
- **4. Ammonia regulation from 2007** Use of feed to reach goal of 15-25% reduction
- 5. Increased price of protein 2009-2012
 - Unchanged price amino acids

Danish Feed

- Pig Researh Centre makes recommendations
- Feed industri and homemixers follow recommendations
- Danish pigs all get the "same" feed
 - Different raw materials but same nutrional standards

Piglet feed

Feed for pigs 30-105 kg

N ex animal per 100 kg liveweight

Effect of reduced protein

Centre

A reduction of 10% in N ex animal

- 11% reduction, TAN-N sows
- 13% reduction, TAN-N, 30-100 kg pigs
- 15% reduction, TAN-N, weaners
- 0.1 lower pH
- 15% reduction of ammonia emission, average

1992-2012 : 35% reduction in N ex animal

- Expected around 50% reduction in ammonia emission from housing
- Coming from less protein and better feed utilization

Effect of reduced protein

Centre

A reduction of 10% in N ex animal

- 11% reduction, TAN-N sows
- 13% reduction, TAN-N, 30-100 kg pigs
- 15% reduction, TAN-N, weaners
- 0.1 lower pH
- 15% reduction of ammonia emission, average
- 1992-2012 : 35% reduction in N ex animal
 - Expected around 50% reduction in ammonia emission from housing
 - Coming from less protein and better feed utilization

The potential of free amino acids is nearly fully exploited already in 2012

and reduced protein = reduced productivity

Phosphorus in feed

01.05.2013

Pig Research P ex animal per 100 kg liveweight Centre Kg P

Pig Research

G P per Feed unit

Lower phosporus level

- More phytase (300% dose) marginal effect
- No sunflower meal in Danish feed?
 - Only ingredients with high digestibility?
- Fermentation of feed before wet feeding
 - P digestibility -> 70% (without 55-60%)
 - To much lactic acid -> lower feed intake
- Feeding sligtly below requirement
 - Not relevant at the moment
 - If supply of MCP runs empty (= P very expensive)
 - Welfare concern

Lower phosporus level

- More phytase (300% dose) marginal effect
- No sunflower meal in Danish feed?
 - Only ingredients with high digestibility?
- Fermentation of feed before wet feeding
 - P digestibility -> 70% (without 55-60%)
 - To much lactic acid -> lower feed intake
- Feeding sligtly below requirement
 - Not relevant at the moment
 - If supply of MCP runs empty (= P very expensive)
 - Welfare concern

Mechanical separation of P and fiber

- To biogas plant
- Burning of fiber fraction
- Reutilize P as fertilizer

Danish BAT-standards 2010

Centre

- P: As low as possible in feed "without" cost
 - Phytase and fase feeding is the solution
- Ammonia: As low as possible for 1.5 euro per pig
- Fully drained floor
 - Cleaning air or acidifikation of slurry (H₂SO₄)
 - Feed : economic optimum (= low protein in 2013)
- Partly drained floor
 - Combined solutions
 - Protein below economic optimum (very low)
 - Dokumentation of feed
 - Cooling slurry
 - Minimum surface area slurry

Conclusions

- Big reduction from optimizing feed, 1992-2012
 - N and P
 - Feed Industri and advisers follows our recommendations
- Difficult to get much further by feed composition
 - We have already taken 80-90% of the potential
- Development in feed utilization has some potential
 - Management, health and breeding long term

Because of BAT standards, new buildings often have:

- Air cleaning or slurry acidification
- Then feed will be "economic optimal"
- Protein below economic optimum only with partly drained floor

Conclusions

- Big reduction from optimizing feed, 1992-2012
 - N and P
 - Feed Industri and advisers follows our recommendations
- Difficult to get much further by feed composition
 - We have already taken 80-90% of the potential
- Development in feed utilization has some potential
 - Management, health and breeding long term

Because of BAT standards, new buildings often have:

- Air cleaning or slurry acidification
- Then feed will be "economic optimal"
- Protein below economic optimum only with partly drained floor

You can produce many more pigs with same ammonia emission as in old buildings - with "old feed"

- But can you get the money and the location?
 - Smell ?
 - Ammonia?
 - P-vulnerable area and recipient?

Danish BAT standard

Pig Research Centre

BAT costs: DKK 8-11per produced pig (1-1.5 €)

Allocation of costs:

- Finishers: DKK 5-8 per pig
- Weaners: DKK 1.30 per pig
- Sows: DKK 50 per sow per year
 - (DKK 2 per weaner)

Extraction ventilation below the pigs' lying area

- area with greatest pollution

Pig Research Centre

10 % of maximum ventilation capacity

Percentage	Collected	Reduction after cleaning	
of emission		Chemical	Biological
Ammonia	> 70 %	> 65 %	> 50 %
Odour	> 50 %	None	About 35 %

Chemical filter (sulphuric acid)

Biological filter

Acidification of slurry

- H₂SO₄ \rightarrow pH < 5.5
- Emission from house reduced 70%
- Emission from storage reduced
- Emission from application reduced 70%
- If same level of Nitrogen is allowed, it will give more grain /rapeseed per ha, because N per ha is 15% below optimum

• Problems:

- Big investment and cost of H₂SO₄
- Smell from storage tank
- H₂S from H₂SO₄

Future development ?

Handling of slurry

- Compulsory yearly manure accounts
- Allocation of fertilizer: 15 % below economic optimum
- Hamony Balance between land and animal units or written contracts – maximum application of 140 kg nitrogen from pig slurry per hectare
- Requirements for utilization of nitrogen in slurry equal to 75 %
- No broad spreading of slurry allowed (injected)
- Spreading of slurry only allowed from February to October
- Stricter regulation for vulnerable areas

